Chapter 6 from the book

"Inductive Learning Algorithms for Complex System Modeling",
Madala H.R. and Ivakhnenko A.G., 1994, ISBN: 0-8493-4438-7, CRC Press;

Chapter 6
Applications

Inductive learning algorithms, called Group Method of Data Handling (GMDH) were de-
veloped using the principles of self-organization modeling. Self-organization of modeling
is the process of finding the optimal structure of mathematical description of a complex
object by sorting many variants according to a certain ensemble of external criteria. Unlike
the traditional modeling approaches which are deductive in character, the inductive learning
algorithms are based on the sorting of models according to the external criteria agreed on by
experts. The inductive approach does not eliminate the experts or take them away from the
computer, but rather assigns them a special position. Experts indicate the selection criteria
of a very general form and interpret the chosen models given by the criteria as the best.
They can influence the result of modeling by formulating new criteria. The overall approach
of the expert becomes that of an objective referee in resolving scientific controversies. The
improvement of man-machine (ergatic) systems is based on the gradual reduction of the
human involvement in the process. The automated systems become more mechanized; i.e.,
they are not only automated but are fully automatic as well. The human element often
involves errors and undesired decisions. One of the examples is the process of specifying
the objectives, or determining the set of criteria. Future development might lead to sequen-
tial decision-making algorithms that include an automatic setting of selection criteria, their
sequential determination, freedom-of-choice, and so on—almost without having to involve
experts to solve important problems. This means that the involvement of human element
will be reduced.

At the present state of development, experts specify external criteria and consider results
without interfering with the optimization processing. In case of disagreement, the experts
can utilize higher levels of criteria (noise stability criteria), so that controversies are quickly
resolved. The problems of nonlinear identification and of long-range forecasting of complex
processes are solved by the computer.

Two-level prediction schemes of learning allow one to leave the choice of the model to
the computer, significantly increasing the lead time of forecasting. The objective character
of the modeling speeds up the understanding of the object, allowing us to avoid false
subjective selection.

The following features of inductive approach allow us to improve the quality of self-
organization modeling and to give the procedure an objective character [32].

1. The minimum-bias criterion agrees that models obtained with the use of two different
sets of data be identical. Such a model leads to a physical model that is isomorphic
to the mechanism of the object under consideration. In self-organization modeling, a



physical model is used only to determine the composition of the set of output variables
subject to forecasting, Knowing this, we proceed to self-organization of nonphysical
models.

Nonphysical models differ from physical models in the composition of the argu-
ments used and in the external criteria. The step-by-step prediction criterion assumes
great importance. Nonphysical models can be constructed in various mathematical
languages that differ in the degree ol prediction accuracy which is measurable by
the correlation time [44]. The nonphysical models can use two- or three-dimensional
time readout. All this is important because the limit of informativeness of a forecast
is determined by the degree of blurredness of the modeling language.

Nonphysical models are used in the self-organization modeling of two-level sche-
matic predictions—Tfor example, annual and seasonal predictions for which the balance-
of-predictions criterion allows the increase in the lead time of detailed (seasonal) pre-
dictions. The usage of an auxiliary criterion like prediction criterion is necessary to
curtail the volume of sorting 1o the reasonable number of annual and seasonal models
and to ensure the uniqueness of the choice of predictions according to the prediction-
balance criterion. The balance criterion serves as the choice of both short-term as
well as long-term forecasts.

- The class of the equations and the form of support functions are selected by sorting
many variants of models according to the selection criteria. For example, a system
of finite-difference equations are formed for use in self-organization modeling of
ecological systems. In traditional approaches, the physical equations are considered
and their discrete analogues with variable coefficients are formed to represent the
object, but ultimately it ends up with poor predictive characteristics.

. The third feature of the inductive approach is the selection of the set of output and
input variables, and of the “leading” variable among them. The objective system
analysis allows us to obtain the least biased system of equations according to the
system criterion of minimum bias.

The inductive algorithm for OSA allows us to sort out all possible systems of
equations consisting of one, two, three, and so on equations and to select the most
unbiased model of system of equations. This determines the structure of the object
and the set of output variables. The best output variable which forecasts better than
all others is called as the “leading” variable.

The variables that are interested may not enter into the set of output variables
during OSA and have to be predicted as a supplement in terms of the functions of
the output variables according to the two-level prediction scheme in time.

. The self-organization modeling allows us to obtain models with optimal complexity
even in case of incomplete information; i.e., without having the data of many important
arguments. This is an antithesis of the idea of increasing the information basis up to
some universal measure. The inductive learning approach, however, demonstrates the
success of such modeling; for example, for predicting winter wheat harvest more than
50 arguments are required to have—the use of fertilizer, method of tillage, periods
of irrigation, and so on. All available arguments are very important. Nevertheless,
in self-organization modeling, only two to three arguments participate for sufficient
accuracy of forecasts (this is further explained in the given examples). Although the
connections among the arguments made during the self-organization modeling remain
unknown to us, these may be taken into account for an accurate forecasts.

. The self-organization modeling is possible with noisy data. The inductive learning
algorithms obey the laws valid in the communication theory—particularly, Shannon’s



second-limit theorem for transmission of noisy signals.

The inductive algorithms allow us to restore the physical model of the object under
study even in the case of noisy data exceeding three to four times the regular signal
[63]. The methodologies used in the communication theory and the pattern recognition
theory allow us to raise the noise immunity of the algorithms. This means that the
accurate models can be obtained with an incomplete information basts and noisy data
in the same way as the accurate signal 18 restored under the noisy conditions and
distortions of various kinds.

The overall modeling 1s object-oriented because all problems are solved according
to the agreed selection criteria. The final results of modeling may not coincide with
the ideas of the modeler about the object being modeled.

1 FIELD OF APPLICATION

The inductive method is an empirical method and is intended for self-organization of math-
ematical models based on measured data. The object of the modeling is identification
and prediction of the object. The usual methods of regularization (for example, regression
analysis) are mathematically elegant but inexpedient external additions.

In self-organization theory, an entire series of more apt criteria arc proposed—regularity,
minimum bias, prediction and others oriented towards satisfaction of the practical users
of the models. These criteria are applied sequentially one after another, to eliminate the
difficulties of normalization (choice of the coefficients) of the critcria, Multicriterial choice
of the model is one of the foundations of noise immunity of the inductive algorithms.

Godel’s incompleteness theory is fulfilled by the problem being concerned with the choice
of the ensemble of external complements, and its composition and sequence of application
at different levels is solved by sifting a number of variants. The upper level criteria is based
on:

noise

1. criterion for noise stability: 0 = signal

— max,

lead time
observation time

2. criterion for maximizing the lead time of predictions: @, =
and

— Max,

3. criterion for minimizing the amount of computational time: ©3 = computer opera-
tional time — min.

The ensemble of criteria is to better ensure the required value of the pair of criterta
©, and ©,. The objectivity is based on the choice of the set of criteria.

The field of application of the inductive learning algorithms is shown in Figure 6.1, This
is widely spread on the plane with the coordinating values of @, and ©,, and @3 = 3 hours
of operational time {usually on minicomputers).

The modeling of optical systems requires application of single-level models with a usual
time reference, accurate initial measured data, and the complete information basis. Two-
dimensional time readout (in terms of seasons and years) in case of noisy data is required
in predicting certain agricultural productions, river flows, and so on. Two-level forecasting
with two-dimensional time readout with incomplete information basis is used for economet-
ric models, modeling of climatic changes, and ecological systems. Some of the practical
examples corresponding to these are given in the preceding chapters. This chapter 1s ex-
tended further for more specific examples in the areas of weather modcling, ecosystem
studies, economical systems modeling, agricultural system studies, and solar activity.

We hope that the reader will get an overall idea of how to approach to this type of model-
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ing. However, the reader must keep in mind that more complex modeling problems with very
high noise levels require development of new algorithms using special mathematical formu-
las, new external criteria, and criteria with canonical forms. The field of self-organization
modeling is open to receiving and providing further technological achievements.

2 WEATHER MODELING

Self-organization modeling requires the presence of two components: a generator of variety
of models (combinatorial or multilayer) and some sensibly chosen ensemble of external
criteria to evaluate these models. A relatively short data sample is needed to estimate the
parameters of the models and to compute the values of the criteria. A general description
of the equations comprising the system to be formed may be known to the modeler. So,
a composite approach is frequently the optimum approach, whereby a general description
specified a priori as a reference by the human author and remaining analysis is done by
computer sorting in accordance to various criteria.

2.1 Prediction balance with time- and space-averaging

The problem of identification of complex objects based on the emperical data is treated
as an ill-posed problem, in as much as a unique solution always requires the use of some
external information or an external supplement according to Godel. This means that it is in
principle impossible to obtain a unique model in optimal complexity without regularization.
In addition to the basic criteria like regularity and minimum-bias, the following are some
criteria are convenient to use for cylindrical polar coordinates of meteorological field.

Interpolation balance criterion

The difference equation pattern has only six nodes (Figures 6.2 and 6.3). During the training
process the patterns are moved vertically upwards in the time axis at one-day steps. Each
position of the pattern yields one conditional equation. All models are trained according to
the inductive algorithm. The expression is

I
q;j = 1(‘1?+1j+4§—1j+f15j+| ‘”ﬁj_]), (6.1

which, from the theory of difference equations, can be used to construct the criterion of
interpolation balance. If N is the number of pattern positions in the interpolation region,
then the criterion is written as

N
1 4
b= E lg; — Z(‘I§+1j + Gy + G *+ g1 6.2)
i:‘

Balance criteria

Balance-of-variables and balance-of-predictions criteria are used when several variables are
predicted simultaneousy. The former requires that some relationship that exists between the
variables at a given time should also exist in the future, whereas the latler should be used
in an ensemble with the predicting models.

As given before, the prediction balance criterion with time averaging of variables (av-
eraging over a season and over a year) which is used mainly for cyclic processes can be
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Figure 6.2, Application of interpolation balance criteria with averaging a) in space (average of eight
predictions is balanced to the average over entire area of the ring), and b) in time and space (average
of 8 x 4 = 32 predictions is balanced to the prediction of the average over entire volume of the tube

6



written as
2 5 [ A ~ = 12
b* = l(Iyear - E(QW + Asp + dsu + qf)J i
B* = b} — min, (6.3)
iEN

where ¢, 4sp. 4w, and gy are predicted average scasonal values of the winter, spring, sum-
mer and fall variables correspondingly and §y.., is the predicted average annual value. N
is the number of years covered by the prediction.

Prediction balance criterion with space averaging of variables

The prediction balance criterion can be applied in a similar way with the averaging over
the area of a ring, which can be written as

| . .
bt = [g(‘h Fhn b+ 08) — ol

B’ = Zb? — min, (6.4)

ieN

where ¢y,4»,- -+, gg are predictions obtained for eight patterns which form a ring around
the axis of a cylinder (Figure 6.2), §o is a prediction of the variable averaged over the entire
area of the ring, and N is the number of steps at which the prediction is checked on the
time axis.

Prediction balance criterion with time and space averaging

Here time intervals are, for example, days and 4-day period and space intervals are one
pattern and the area of the ring; this can be writlen as

1
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B* = > b} — min, (6.5)

N

where go is the predicted value of the variable averaged over the entire volume of the pipe
consisting of four rings.

Normalized combined criterion

_7]b.v — Nbsmin )2 + ( A(C) - A{C)miL )2 4 ( b— bmin

—— ™ 32 min (6.6)
Nbspame — TBSmin A(C)max - A(C)min bmux - bmin

c6® = (

Alternatively, normalization can be avoided by using the criteria ngs — min, AYC) —
min and b*> — min in a sequence one after the other.

To ensure the needed freedom of choice is the goal of every sequential decision making
procedure; first F; models are selected from total of Fy models using the first criterion,
from this F, are selected by the second criterion, and finally the third criterion is used to
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Figure 6.3. Positioning of implicit patterns on three daily charts in cyhlindrical polar coordinates p
and ¢; a) plan, and b} axonometry

select a single model of optimal complexity Fo > Fy, > F» > F3 > 1. The sequence of
application is

Fy — mp,(F)) — AXONF,) — b(1). (6.7)

To optimize the freedom-of-choice, F; and F, are chosen to select several identical models
on the basis of 77, and A%(C). A single optimal model is selected from this group using the
balance criterion. The number of models tested by the balance criterion can be increased
depending on the computer capacity—usually F3 < 8.

Sequential application of the criteria does not require the normalization of their values
and also there is no need of introducing criterion weighting coeficients.

2.2 Finite difference schemes

Self-organization modeling requires one to indicate the list of variables containing a large
access, an appropriate emperical data sample, and a reference function. The computer selects
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Figure 6.4. Explicit elementary patterns: (a) for the point problem g(r), (b) for the two-dimensional
time scale ¢{(z, T), (¢) for the problem g(x, y), and (d) for the three-dimensional problem g(x,y, )

the ensemble of most effective arguments, finds the optimum structure of each equation, and
estimates the coefficients. The depth of minimum of the selection criterion is the measure
of the modeling.

Fields of meteorological parameters (temperature, pressure, humidity, etc.) are usually
described by the linear partial differential equations. The linear finite-difference ¢quations,
which are discrete analogues of the linear differential equations are suggested as reference
functions; these equations can be expanded by introducing nonlinear terms into them.

The following equation is an example of a point problem:

d’q

d
A + al‘(g +aoq = f1). (6.8)

By using the forward finite-differences of Ag= (g — ¢~ ") and A2g=(4' —¢" ) — (¢ ' -
g ~?%), this equation has the following finite-difference form:

¢ -2 ' +¢d D +ailg — ¢ DH+ag = f(D) (6.9)

The elementary pattern corresponding to this equation represents the arguments ¢~ ! and 4’ -2
which have an effect on the output ¢'.

q = [ +HG g, (6.10)

where f;(#) is the so-called source function or trend function.

To construct the system of conditional equations, the data collected by moving the pattern
step-by-step along the time axis (Figure 6.4a) are arranged in the table form with the columns
of 1,¢',g" !, and ¢'~2. Each position of the pattern corresponds to onc row of the data
table which is divided into different parts. The prediction is obtained through step-by-step
integration by moving the pattern inte the region of future time.



Two-dimensional time-readout

A significant improvement in accuracy can be achieved in modeling of cyclic processes by
using the bivariate time scale; for example, months and years or seasons and years, hours
and days, etc. The pattern shown in Figure 6.4b indicates that the output ¢; ; is influenced
by the arguments ¢, r,¢,—27, and ¢, r_1. This pattern can include not only the output
variable but also the auxiliary variable like x as

g7 =S T) + ol 1 G271 G 11 G20 s

X T Xy 1 Ty X2 T Xe T ]y - ) (6.11)

The patterns related to the (x,y) and (x,r) planes can be identical to the patterns with
bivariate time scale (r, T) (Figure 6.4¢).

Similarly, the patterns related to the planes (x,y, ), (x,y,z), or {x, ¥, 2, 1) (Figure 6.4d)
are represented for spatial problems having number of delay arguments along each axis.

Implicit patterns in cylindrical coordinates

In self-organization modeling, the physical fields are identified on the basis of different
reference functions; algebraic, harmonic, or finite-difference equations. Usually the finite-
difference equations arc preferred because they have additional advantages. They are linear
in coefficients and nonlinear in variable parameters. But sometimes they may create some
serious problems like providing unstable predictions. In such cases addtional measures are
taken in achieving the convergence of step-by-step predictions such as

e decreasing the sampling interval of variables;
e simplifying the patterns and functions (not considering the nonlinear terms):
¢ changing from “explicit” to “implicit” patterns; and so on.

Let us see the concept of implicit patterns; they are realized on a closed curve and
are moved simultaneously by one step. This yields a simultaneous system of equations.
The most promising are the finite-difference models realized by implicit patterns that arc
constructed n cylindrical-polar coordinates (f, g, ¢) (Figure 6.3). The differential equation
of diffusion in this plane contains a linear sum of derivatives of not higher than the second
order

0y 0%y Py dy Jdy Jy
Ay +a,—5+ar—= +a +a +a =f(t,p, 0 6.12
052 YAgS 2 5% Yot T4, Sd) =f{t, p, ), (6.12)
where ap, a;,as, - -, as are the constants and (¢, p, ¢) is the source function.

The following finite-difference analogue can be replaced considering one additive trend
equation.

rooL Jg-1 =2 1 J ! Ry
yij - fl(z-: 2, (,75) + fz(},j 1 y[.} ?}'j+]j+l 1)’[—]j+l ryfAljf-l 7.\[+1j7| »

N R 1 ! i
Tipr T 5T Tidjels Tt s Tty 15 Tintj— 1 ) (6.13)
where f1(1, p, ¢) 1s the trend function, y is the predicted variable, z are the variables which
are correlated with the predicted variable, and i and j are the indices of p and ¢ coordinates.
The table of data sample is prepared for each position of the pattern along the closed
circle that is achieved by placing the patterns along circular layers of the cylinder in such
a way that the adjacent patterns have two common points. The patterns are trained using
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the part of the data in one region and are used for step-by-step predictions in the other
region. The meteorological factors are predicted for the first layer near the central axis of
the cylinder making it possible to determine the weather in the second layer, and then the
third layer, etc. for the entire region included in the cylinder.

For example, Figure 6.3 shows the placement of eight patterns on one of the three layers
of the cylinder. The eight pattern equations can be written for the first layer as

r—Zk I—lk tk rL r]‘ lk =0 6.14
Qotaigy -~ +axq; ¥ axgigjeg Y Oadio A5G0 Y asgi gy = (6.14)
where k = 1,2,---,8 and the coefficients ap,a,- - -, a are estimated using one of the in-

1—2

k k
ductive learning algorithms. While predicting, the values of all g; ~ and qu_i are known

#

as these were positioned in the past and the values of qi1j—) and q,fl:]jb, are determined
with a separate prediction because these are located near the cylinder axis. Pattern cou-

B . —1 C+1
pling equations ‘Iﬁu—l = qﬁi,jﬂ or qffk_,jﬂ = q;‘_U_, hold for qﬁi]jﬂ and qf’:]jﬂ. Thus, 16

necessary and sufficient equations are available for determination of 16 variables (eight
qgf-ljﬂ and eight Qi1j+1)-

The equations are obtained for the second and third layers of the cylinder; the only
difference is that the values of qﬁ] j—1 and ‘151‘71171) are determined from the data of the
previous layer, not by a separate prediction. This means that a separate prediction is
required only in the region located near the cylinder axis.

The self-organization theory offers the additional means for improving the convergence
of step-by-step prediction:

1. By using the finite-difference equations with variable coefficients; these have simpler
palterns than the equations with constant coefficients.

2. By using the step-by-step prediction criterion (i*) in the ensemble of the external
criteria; this criterion selects from the set of possible models those that have adequate
convergence.

2.3 Two fundamental inductive algorithms
Combinatorial algorithm

Since the original differential equation is idealized, the nonlinearities in the system are taken
into account by expanding the finite-difference analogue (reference function) with higher
ordered terms. For example, for a point problem we can have

q = [+ @+aig " +arg  +asg T vang ¢ v asg g R

-2 1-3 & +agq’_22 +agq’_32)., (6.15)

tasq T g +arg”
where f1(z) is the trend or coarse model. This is usually obtained in advance by applying
the least squares method through the experimental data or by using an inductive algorithm
with the minimum-bias criterion as an external criterion. The purpose of this model is to
decrease the number of arguments of the difference part, lumping together some of them
into a separate term. In weather forecasting this model can correspond Lo a climatic forecast
averaged over a long time. The remained difference part of the model refines this forecast.
The combinatorial inductive algorithm enables us to evaluate the “structure of functions”
obtainable from this equation on the basis of minimum-bias and regularity criteria. Therc
are 10 terms in the difference part of the above equation and the total number of equations
to be tested is 2'°.
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Multilayer algorithm

If the difference part of the above polynomial reference function contains more than 20
terms (varies according to the computer capacity), the multilayer algorithm with linearized
terms is applied. The linearized version of the reference function is

g = fi+(ap+awi +azwa+ -+ dmWn), (6.16)

where m > 20 and w represent the terms ¢.

The multilayer algorithm determines the complete linear polynomial as a superposition of
partial polynomials with two-variable of type (§x = aw +anw;+axyw;, where k indicates the
unit number; i = 1,2,.--,m; j=1,2,---,m; and i #j). This algorithm realizes the method
of incomplete induction by omitting some partial polynomials during sorting and is never
tested against the criteria. This is done in a multilayer feedforward network structure. The
result of self-organization modeling is the output model with an optimal complexity. The
computer selects the structure of the model, its nonlinearity, and the content of its arguments.
During the processing the ineffective terms of the reference function are discarded.

2.4 Problem of long-range forecasting

The method of analogues is one of the interesting methods considered in the literature
for reliable long-term weather forecasting. The idea of analogues is based on finding the
interval whose meteorological characteristics are tdentical to those presently observed in
the measured data and the future of this interval which is measured in the past is the best
forecast at the present time, Although the idea is so simple, attempts to apply this idea
always produce results that are not very convincing because with a large number of observed
variables it is not possible to find the exact analogues in the pre-history data. The self-
organization method based on the inductive approach can be interpreted as an improved
method of group analogues in which the analogues of the present state of the atmosphere
are selected by using special criteria to produce the most probable forecast.

The problem encountered is how to estimate, at least approximately, the achievable
prediction time. The maximum achievable prediction time 7, of a one-step forecast is
determined by the coherence time 7, of the autocorrelation function A,(7). The maximum
allowed prediction time of a multiple step-by-step forecast is equal to the coherence time
multiplied by the number of steps (7, = 7..n). This means that prediction error increases
with each integration step that imposes a definite limit on the step-by-step forecast. This
leads to seeking of the maximum capabilities of multiple step-by-step prediction, assuming
that they are determined by the coherence time in the same way as they are for one-step
prediction. However, studies of autocorrelation functions of meteorological parameters 10
determine maximum prediction time have not yet been completed. The expected results
should be similar to the studies of autocorrelation functions for other complex systems.
It turns out that averaging of variables in time increases the coherence time. Ongc has to
remember that it also depends on the physical properties of the process being predicted as
well as on the quality and characteristics of the mathematical apparatus. This corresponds to
the extreme variations from predicting “purely” deterministic objects like motions of planets
to “purely” random objects like games of “lotto.” The actual physical problems are always
located in between these two cases.

The autocorrelation function of a process contains some information on its predictability
(the degree of determinancy or randomness). According to studies it is evident that by
increasing the averaging interval of variables in time or space shift the process from the
region of unpredictability into the region of long-term calculability—i.e., ceniennial averages
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and global averages of pressure, temperature, or humidity can be predicted a thousand years
in advance. At the same time the predictions based on the daily avearges cannot be valid for
more than 15 days. Nevertheless, it is possible to overcome the predictability limit by the
following suggested possibilities that are applicable in predicting some weather variables
like temperature, pressure, etc. at the surface layer.

2.5 Improving the limit of predictability

Here we discuss the possibilities of increasing the time of weather forecasts in the self-
organization method.

1. The first potential contribution of the self-organization method in improving the pre-
dictability is in the mathematical apparatus and objective synthesis of the system of
equations; the structures of the equations are selected by the minimum-bias criterion.

The proposed equations are to be valid not only in the training region of the data
sample, but also in the testing region. This is precisely what is done by the minimum-
bias criterion. This means that the computer sorts out the number of equations for
each specified output variable separately and finds out a system of equations that is
invariant in time. This is the objectively evaluated system of equations based on the
empirical data,

2. The second potential contribution of the self-organization theory in improving pre-
dictability is the composite use of different averaging of variables in time and space
with the help of the prediction balance criteria. The balance criterion provides a ref-
erence point in the future, allows one to perturb the divergence of solutions which is a
typical property of the hydrodynamic equations, and from there increases the entropy
of predictions.

In predicting the average daily values, the reference point in the future can be the
forecast of average monthly values. Similarly, in predicting the variable of average
over an area, the reference point of a forecast at a specified point on the surface of
the earth can be the forecast of a sum of variables at several points. This means that
when the space averaging is used, the forecast ability of variables averaged over large
arcas becomes higher. The forecast validity time based on short averages is pulled
up toward the validity time on a large regions.

3. The third possibility provided by the self-organization theory is a significant widening
of the complete set of arguments (input variables). It is followed by selecting the
most effective of these arguments, It is reasonable to include the connected patterns
that realize the long-range effect inserted with appropriate delays in time in the use
of moving average sums of variables, which are analogous to the integral terms of
hydrodynamic equations. If the proposed arguments turn out to be ineffective, these
will not be included in the ensemble of predictor arguments.

Example 1. Self-organization modeling of air pressure and temperature at a point located
on the cylindrical axes [58].

The possibilities mentioned for improving the limit of predictability in the self-organization
method, which uses implicit patterns in cylindrical coordinates, allow one to compute future
values of the meteorological parameters. These parameters are already predicted one-step
(day) ahead at nodes of all patterns located on the cyldrical axes. The problem requires the
one-step prediction of the parameters at one point on the surface of the earth. This can be
obtained by using the multilayer algorithin which is demonstrated in this example.
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Figure 6.5. A sample weather chart

The example shows how one can find the optimum structure of equations which ex-
press the variation of temperature and pressure fields as a function of time. To determine
the models used for predicting pressure (P) and tempcrature (7), the metcorological data
charts (Figure 6.5) are divided into clementary cubes and average daily values of the me-
teorological parameters are prepared in each cube. These charts are stacked on time axis
as a parallelopiped-space of given observations as shown in Figure 6.6. This consists of
6 x 10 x 10 unit cubes with the units of measure 5120/6 km along the x-axis, 8400/10 km
along the y-axis, and 1 day aleng the time axis.

Six shapes of even paiterns which are tested in the example are given in Figure 6.7 and
the corresponding finite-difference models in otimal complexity with the estimates of their
accuracy are listed in the Table 6.1. (Here P and T are the average values of the arguments
for the four nodes.) The equations of the complete pattern have the following general forms:

Pt = £, y)+f2(PfJ,Pf LR T T TR )

T = Alx, )+ T T T2, P P PR ) (6.17)

i

The data are collected according to each pattern from the parallelopiped-space of the
observed data and arranged in the tables in relation 1o the output and input variables;
the data are normalized. The data are divided into sequences of A,B, and C, where
W=AUB=280%, and C = 20%. The data sequence C is used as a separate sequence for
checking the models. The system of equations corresponding to each pattern are selected
on the basis of the combined criterion (¢32 = nZ, + A*(()). All equations are compared
with each other on the basis of the relative error on the sequence C. The results show that
the system of equations corresponding to the fifth pattern (Figure 6.7¢) is the most accurate,
The relative error is measured as

(Sp = \/ENLC ZZ Z}’(P - p)zj/(Pnlax - Pmin) — min

14



A
S
7 day
forcast
¥
10 day
pre-history
———’//2_’—" - y
e 7 5120 km
8400 km
/< >

X

Figure 6.6. Parallelopiped experimental data for ten days (training and testing data) and of predictions
for seven days; ‘*’ indicates the point of interest, a location on the earth

. 1 A9 ;
o = \/[N_C Z Z Z)’(T - T)A]/(Tmax = Tipin) — mun, (6.18)
rox

where P and T are the actual values, P and 7 are the predicted values, P and T;,,, are
the maximum values, and Py, and 7, are the minimum values of the pressure and tem-
perature, correspondingly; N¢ is the number of data points in the sequence C.

For Nc =7 (, i.e, for a seven-day forecast,) the relative prediction errors on pressure
and temperature are dp = 0.3709 and 4y = 0.3043, correspondingly. Figure 6.8 shows the
curves of predicted temperature and pressure for the axial point shown in the parallelopiped-
space of data. The system of equations corresponding to the pattern V (Table 6.1) is used
for this purpose. The system is adaptive—i.e., the forecast is updated everyday as new data
are received.

The example given above is conducted on an experimental basis. In this example, neither
prediction balance nor an objective synthesis of system of equations are used. This means
that the possibilities of improving the accuracy of the forecasts have not been exhausted.
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Table 6.1. Optimal models for different patterns

No. | System of equations Nps AO) c3
I P"“ = —1.0083 — 0.10997 + 0. 3920T’J +0. 8809P' 0.021138 | 0.276223 | 0.277031
+0 OO47P’ T’ +0. OIZIP' P’ +0. 0001771)’ T'
rf” =1 7269 +0.141 u + 0 93347’ 0.201362 | 0.290929 | 0.353817
| P’” = 6.0649 + 0. 2355;»* —0. 00%487*3 ) 0059P%, Pf ! 0.022273 | 0.289461 | 0.290317
+o 0047P] P! +0. 010591“ ‘T’ +0.00503P], P, + o 00405P" T
Tf+1 = —0. 6725 +0. 9838T’ +0. 00172P’ ‘ﬂ ! 0.176932 | 0.352216 | 0.394159
11 P’j =4.0505 — 0. 00734P’ 240 46821’" +0.00745pt P! 0.121926 | (1362449 | 0.382407
+0. 0124P‘ -’-P’ 2 +000566P‘"f ! 00026513‘ 57‘}
Tt =1, 6%42 + 0 49087" Z4 0 501 97’ —0. 0000”56}” ‘Pf 2 0.079602 | 0.233970 | 0.247141
N Z0.0031 PP o 0030977~ TL ?
IV | P! = ~3.6239 +0.69611 +0. 8436P‘ +0.2970P 0.057442 | 0.352762 | 0.357409
+0 2335, +0. OUSISPfHJP:” 0 0000759:+ JTjH
+0. oozsspf le y+ 0 ompf ]Tfj
T'+' =1 28603 +0. 4706T‘ it 0 3847'7"“ . 0.186287 | 0.197606 | 0.271572
v P”‘ =5.06+0.3648P_ + 0,007871"6.4 — o‘oosaspgjrfm y 0.080550 | 0.235598 | 0.248988
+0 01848PLUP: ) — 000572277} _yto 00002522 “'P;J.
T”' = —(.8886 + 0. 2417?” +0. 28341’ i+ 0 27121’" . 0.038617 | 0.235150 | 0.238300
+0 00961!’;“!7“' !
VI P’” = 5.056 + 0. 572P’ - 0. 00234P' 27‘ ! 0.190290 | 0.198452 | 0.279023
+0 owsp’ ' j+0 0069‘3113’ 1Tf
T'*” =3, 9901 + 0 642T’ j+0. 221 57‘ ! 0.046587 | 0.298915 | 0.302524

+0 003696F" 7‘ ‘—0 0002287*1’—

2.6 Alternate approaches to weather modeling

Here are some other suggestions on how to use the inductive approach in solving the weather
forecasting [60].

The self-organization method is of a heuristic nature. Its main idea is to generate a
large variety of variables and functions connecting them, and to choose the best structure
in optimal complexity according to an external criterion, The following proposals are made
for better predictions:

an autonomous system of homogeneous difference equations (for short-range predic-
tions) is proposed to describe the change in instantaneous as well as the averaged
values of the variables and to include any source function and external disturbances;
the use of two-level predictions on the basis of several balances (for example, year-
season, and year-month);

a two-level algorithm (for medium-range predictions) to use with several balance
criteria;

the use of correlational models for predicting weather in movable coordinates;

the use of ecological variables in a combined system of weather-climate equations to
increase prediction accuracy and prediction time; and
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Figure 6.7. Different pattern schemes considered

e the use of a method of group analogues (for long-range predictions) that 1s based on
objective clustering of the weather into number of clusters (not specified in advance)
with averaging of the predictions of the variables one by ong; the set of significant
variables can be set up objectively by the objective system analysis algorithm.

The meteorological variables that determine the weather (air pressure, temperature, wind
force, humidity, etc.) oscillate continuously around a mean climatic value (or a trend)
in a random manner. The trend is usually known and can be predicted rather accurately.
This means that the problem of weather forecasting is reduced to predicting the random
deviations of the variables from the trend. These deviations are called the “remainder.”
One should note that all of the variables referred below correspond to such meteorological
variables.

The suggested approaches are described below.

Weather modeling in fixed coordinates

The first approach suggests including the variables of external disturbing influences with
the averaged, delayed, and higher-ordered arguments into the reference functions under
consideration. The candidate variables usually used are in the original equations; that is,
g1 = u, the projection of the wind velocity onto the north-south axis, g2 = v, the same
onto the east-west axis, ¢y = p, the air density, and g4 = A, the air humidity are introduced
along with the variables g5 = P, the pressure, gs = T, the temperature, and 7,x, and y are
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Figure 6.8. Performance of the system of equations trained based on the optimal pattern structure for
pressure and temperature for pressure and temperature at the point of interest; the full line indicates the
actual measured data, the broken line indicates the pattern training based on the measured data from
the point of interest, and the dotted line indicates the pattern training based on the whole parallelopiped
of data

the time-space coordinates. The variables of external influences can be the parameters of
distant points of the geosphere; for example, the temperature or pressure of air at the centers
of the Atlantic ocean (minimum and maximum values), etc.

Using the implicit form of the pattern (Figure 6.9), the following equations can be formed
for each of the variables listed.

(a) autoregression equations (k=1,2,.--.6):

—1 -2 —3 .
Gy =00 " G G o Gy, (6.19)

(b) multivariate equations (k=1,2,---,6: I=1,2,---.6: k # 1y

r_ -1 =2 -3 t t t
Qe = h (le-j iy Gy T D by Qk,-j_)
I =t -2 -3 ¢ H ' t
+ ; 6.20
fz(q’fj’ql'ij 7ql"j 7q.[‘-j ’q’i—lj’qll'ij’qlij— ) QI-- )’ ( )

! ij—2
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{c) equations with source functions (k=1,2,---,6)

By = Hi A5y (6.21)
(d) equations considering the external influences (k=1,2,---,6):
quj = fi +fo +f3 4+ falur, uz, ). (6.22)

Two-level predictions

In one-level weather predictions, either instantaneous values of the variables or the variables
averaged over the same interval of time are used. In two-level predictions, these calculations
are made for two time intervals (for example, season and year). The balance criterion enables
one to choose a pair of seasonal and yearly predictions. For regularization purposes one
uses the balance criteria set up for other time intervals or space regions. The prediction
time in the averaging of the variables tends to the prediction time of the variables averaged
on a long time interval or a large space region. We recall that balance criteria can be either
temporal or spatial.

The descritization step of the data in time is chosen for both the components in relation
with the extrema of the corresponding correlation functions.

Two-step algorithm

The two-step algorithm 1s used for solving the system of difference equations and to obtain
the model in optimal complexity.

At the first step of the algorithm, the multilayer algorithm is used with the regularity
criterion to obtain only the effective candidate variables and their estimates.

At the second step of the algorithm, the reference function includes the higher ordered
arguments (product terms to the order of three) tor the effective variables selected in the
first step. This uses the multiplicative-additive and non-linear functions. Depending on
the number of arguments, either combinatorial or multilayer algorithm is applied with the
minimum-bias or regularity criterion to obtain the optimal structure.

With the “implicit” patterns (Figure 6.9), each of them is trained up along the time axis
by estimating the coefficients. The output variables are found by solving the simultaneous
system of nine equations for all patterns located at the corners of the square. The stability
of the step-by-step prediction is increased with this procedure. For each candidate variable
the implicit patterns are used. This means that there are nine equations for each variable,
and for the external influences and source function, explicit patterns are used to obtain
a single equation. Ultimately, an autonomous system of finite-difference equations are
obtained in which the outputs are the averaged system variables and external disturbances.
The solution of such a system serves as analogues corresponding to find the free motion of
some closed system and, hence, it does not need any special orthogonalization such as the
use of Chebyshev series. Predictions are obtained by step-by-step integration of the system
of equations. Here it is assumed that the external disturbances change in the future as they
have in the past.

Weather forecasting in movable coordinates

In meteorological problems, the equations of motion of a cyclone or anticyclone are uncou-
pled into an equation of motion of the center or a system of equations describing the motion
around the center. The center is defined as the point corresponding to the two-dimensional
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correlation function formulation. The most accurate prediction is given by a method using
the weather satellites’ data. The modeling is done by using synoptics and that is why
it is subjective and why it depends on the experience of the modeler. For example, in
determining the position of the center of a cyclone (about 20 to 40 km/hr) for a prediction
time of 24 hrs, the average error in determining the speed of displacement is 6, = 300km/hr
and the average error in determining the direction of motion is 6, = 12°. This leads to
an average error of 6, = 200km for the position of the center. This is because the pictures
taken from the satellites do not show the wind at high levels when there is no cloudiness.
This leads to unexpected motions of the formations [81].

In place of subjective forecasting, one has to use mathematical modeling, particularly
the inductive approach which is based on objective reasoning.

Atmospheric formations like cyclones exist for only a short time. This means that
only few points of observations arc available within that short interval of time. Under
such conditions, the inductive algorithms work very efficiently to study the situation. For
example, the model that can be obtained from the above two-step algorithm consists of a
system of two finite-difference equations (one equation for each coordinate}. This can be
integrated for step-by-step predictions of several steps ahead.

Prediction of the change in the atmospheric formations

It is convenient to locate the coordinate origin at the center of an atmospheric formation
such as the center of a cyclone. This means that the problem is predicting change in the
shape of the formation around the coordinate origin. The two-step algorithm 1s based on
the use of finite-difference equations with the implicit form of the patterns. The pressure at
a definite point in the x, y- plane which moves together with the center of the cyclone over
the surface of the earth, can be predicted using its delayed values and the pressures at the
neighboring points located at the corners of the square (Figure 6.9).

!
i+1j

= AP PP P Py, (6.23)

1

r_ r—1 r—2 r—3 !
Pl-j—ao+a1P,.j +a2Pl-j +a3P,-j- +--'+b]PJ-7]j+b2P

where the time axis ¢ is located at the center of the square as shown.

Use of correlational models

The 1sobars shown on the meteorological charts can be considered as random functions in
the space coordinates and time. They can also be represented as a two-dimensional spectrum
and a two- dimensional correlation function of the surface.

We assume that the self-organizing correlation function (its numerator) is stable; ie., it
holds the same characteristic in the prediction region as in the interpolation region. This
condition enables us to obtain an optimal nonphysical nonlinear model according to the
combined criterion of minimum-bias plus prediction.

The advantage of the correlation models is that they can become multifactor models in
a simple manner and that they take into account several meteorological variables and their
delayed arguments.

Use of graphs with binary transformation [55]

The problem of predicting the shape of a cyclone (in mobile coordinates with its center)
can be simplified by considering the shape of isobar curve as a representative of binary
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discretization of the pressure (for example, for P = 1000 mm, the pressure in the region
close to the center (Figure 6.9) is taken equal to £ = —1 and outside the isobar it is £ = +1).
Such a binary approach decreases the requircments on the number of cobservations and
increases the prediction accuracy and its time.

The algorithm consists of three parts: (i) training on the graphs of prehistory, (ii) adapta-
tion of the graphs as per the predictions (ensuring the stability of step-by-step predictions),
and (1ii) selection of the best graph according to the criteria.

The field is partitioned into small squares in which the pressure is either +1 or —1.
Four adjacent squares provide a single input for the graph. The training is conducted by
calculating the number of transitions of the output variables to +1 and —1 (Figure 6.10).
The adaptation is done by changing the graphs with cach step in the prediction such that
the number of transitions on the entire prediction interval is equal to their number in the
observation interval; accordingly, the number of transitions in the graph is decreased by one
at each step.

The graphs can be considered with the preceding states ( the last value or the last two or
three values of the pressure in time). All the graphs are used for predictions and the best
one is chosen according to the combined criterion.

Use of ecological variables

Usually, prediction of climate involves the prediction of variables measured with a large
siding time averaging or moving average interval. Many ccological variables result from av-
eraging different influences activating in the process—first, meteorological variables; hence,
there is considerable correlation between the ecological and the meteorological variables.
One can refer to the work of Lebow et al. [80] for such practical examples.

The possibility of using ecological variables for predicting weather is debated. The ob-
Jective system analysis algorithm often yields a set of significant variables that include both
ecological and meteorological variables. For example, a model obtained for the ecosystem
of lake Baykal includes the variables (yearly average values): gj—the water transparency,
¢3—the biomass of the plant life in the water, g4—the biomass of zooplankton, and u,-—the
water temperature at the surface layer. These are effective output variables in studying
the ecosystem. Corresponding models are obtained for each of these variables. They are
used for step-by-step predictions to the year 2000 to study the changes in the system. This
means that one meteorclogical variable like water temperature can be predicted by using
the ecological data.

The equation obtained for the temperature in the system is not a physical law, but is
merely a tool for predicting the temperature. For extrapolation or prediction of a variable we
can use the selected model, whether it be a finite-difference equation or an algebraic equation
treated in the same way. For example, Figure 6.11 shows the autocorrelation function of
temperature and the cross-correlation function of temperature and biomass of zooplankton. It
shows the presence of considerably higher frequencies in the temperature than in the process
of interaction between the temperature and the biomass of zooplankton. The correlation time
of the remainder of the first process is less than that of the second. Hence, the prediction
interval of the variable temperature when using an ecological variable is greater because
the limiting attainable prediction interval is proportional to the correlational interval. This
means that the ecological variables help in the process of predicting meteorological variables
by increasing accuracy and the prediction interval.

In this example, the ditference equations used for the ecological variables in predicting
the temperature are treated as approximations of their variation. Similarly, the difference
equation used for temperature in predicting the ecological variables should be treated as an
approximation of its variation with time.
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Figure 6.10. Graphs of the number of transitions: upper graph with allowance only for the last state
of the field and the lower graph with allowance for the last several states of the field
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Use of objective clustering

Let us suppose that the computer has selected four out of six variables to use in the
system of autonomous equations listed for characterizing the weather. Any point in the
four-dimensional coordinate space represents the weather at a given time. Similar points
constitute a cluster of “good” or “bad,” *dry” or “rainy” weather. The number of clusters
can be found by self-organization clustering with an algorithm of objective clustering of
multidimensional space into an unknown number of clusters. A more accurate and de-
tailed representation of the input information helps to find more weather clusters. Here the
threshold values for the clusters are not necessarily specified.

Method of group analogues

According to the method of group analogues, when using prehistory data one has to find
several situations of the weather (in some interval of time) that is very similar to the present
weather conditions under consideration. The duration of a situation is equal to the correlation
interval of the anamoly. Then, prediction of the weather can be obtained by averaging all
similar situations. This is the foundation for contemporary long-range prediction.

The selection of an analogue for a given synoptic situation or pattern is a common
operation in synoptic practice, particularly in long-range weather predictions. To avoid the
subjective choice of thresholds for distinguishing situations, one can entrust this operation
to the objective clustering algorithm. Here the more extensive prehistory data the computer
can examine, the closer to each other will be the situations associated with a single cluster.
However, there is a limit to the length of the data sample. Beyond that limit the number
of clusters does not increase. Thus, the inductive approach can help in comparing many
candidate cases and in finding the optimal number of clusters which can help predict the
near future. Usually, the computer chooses several noncontradictory clusterings differing
from each other in the number of clusters and in the set of variables. It is expedient to
choose from these a single clustering which corresponds to the longest correlation interval.
This can be done by further regularization as described in the previous chapter.

Long-range weather prediction

There are at least five different types of atmospheric circulations known in the northern
hemisphere. If one type of circulation exists more often than the others, that is called the
prevailing circulation. The change from one type of circulation to another 1s a purely random
process and is not subject to prediction (like the result of flipping a coin—"head” or “fail”).
However, the change of prevailing circulation from one type to another does lend itself to
prediction like any averaged variable, because the correlation function of the process of
change of prevailing circulation must be rather broad. Each cluster of the non-contradictory
clustering enables us to obtain a long-range weather prediction.

3 ECOLOGICAL SYSTEM STUDIES

Here the performance of the multilevel algorithm along with the objective systems analysis
described in the second chapter will be demonstrated in the study of ecolegical systems.

Let us briefly discuss various stages of this algorithm.

The first srage is to divide the set of variables into three subsets: the output variables,
the input variables, and variables which have no substantial effect on the subsets. This is
the first level of the multilevel algorithm (also called as objective system analysis) used in
detecting the relationships among the variables.
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The next two stages belong to the two-level analysis of the algorithm; the purpose of the
first level 1s to divide the set of predictions of the average annual values of the variables
(those not discarded during the first stage) into “good,” “satisfactory,” and “unsatisfactory”
predictions and to select the best predictions (one for each variable). The purpose of the
second level 1s to predict the average seasonal values of the output variables on the basis
of a series of sets of seasonal models.

3.1 Example—ecosystem modeling

Example 2. Self-organization modeling in the Lake Baykal ecological system.

Lake Baykal was thought to be exposed o so-called anthropogenic perturbations because
of industrial waste, tourism, etc. The views of scientists on this are diversified. Finding an
objective method for predicting the condition of the lake is desirable. The inductive learning
methods based on the principle of self-organization are good candidates for exploring the
objective characteristics of the system.

The list of possible variables is given by biologists. The seasonal and annual values of
the following parameters for a 23-year period are used in this example;

g1 — the transparency of the water in meters,

g2 — the biomass of the phytoplankton in mg/m?,

g3 — the biomass of the small plants(Melosira)in mg/m?,
g4 — the biomass of the zooplankton in mg/m3,

gs — the biomass of the epischura in g/im?,

u) — the surface water temperature in°C,

u, — the water level in meters, and

u3 — the number of hours of sunlight.

Small letters denote the seasonal values and big letters denote the mean annual values.

Here the problem identifies a point physical model that represents the ecosystem. This
is solved by using the multilevel iterative algorithm which has the levels of the objective
system analysis to identify the characteristic variables of the system and the two-level
scheme to select two nonphysical models (annual and seasonal) for long-range quantitative
predictions,

Objective system analysis

This level is used to synthesize a model in the form of systems of {rom one to five equations.
The primary variables are used to form the polynomials in the form of finite-difference
equations.

First fayer. The finite-difference models of the form given below are used for each of the
five variables (g; — gs).
g = ap+ayul +aud T+ asul  +aqul T +asulT?

— —7 — -
+a6u5 + a7ur2 ! + agutz T+ agut2 3 +a10u’2 4

+a”u5 + alguffl + (113.“.;'2 + a14ug_3 + 01514274

-1 t—2 1—3 1—4
taeq;  +apg; T +awgg, C +aeg; . (6.24)
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Second layer. At the second layer, there are C3(= 10) systems of two equations of the
form as given below:

t H —1 -2 -3 t—4
q; = ap+auy +azu  +as T+ aquy T+ asiy

+agih + aziy '+ aguh E + agul 7 + ajoul !

+£1“M3 + algug_l + {1131113_2 + a14u3_3 + 015H5_4
—1 -2 -3 —4
+aieq;  tang; +aisg  +dg
~1 —2 -3 —4
-le()q} + dy) qj- + (Izg(]} + a23q} + a24qj'- . (6.25)
In the third and fourth layers, Cg(: 10) systems of three equations and C‘;*(: 5) systems of

four equations are used correspondingly. In the fifth layer, a single system of five equations
which contain 40 terms is used;

— — 3 _
g = ap + ay) + axd " + a7 + agu ™ + asu T
+agu + a-,;u’z“1 + agu'z"z + agu'z"3 + amu'z”4

+anu3 + algug_] + (l]}llg_z + (.'14.54{(3 + a15ug"'4

t—1 =2 -3 t—4
+d16q; +aizq; " tdgg; T +a)peq,;

t —1 r—2 —3 r—4
taxqg; +ang;  tang; T tang T taug +

r 1—1 =2 -3 r—4
+azsq; + g,  +dyg, T tdigq, " +dieqg; . (6.26)

The computational volume can be reduced at the higher levels by discarding the terms that
are not effective at the preceding layers.

The F best models are selected at each layer by using the system criterion of the minimum
bias. In this selection, a system with at least one equation having n,; > 0.01 is eliminated
from the sorting. The optimal mode! is selected according to the step-by-step integrated
prediction accuracy of the prediction criterion on the total points V.

From the above analysis, the following system of equations containing the variables
3 and g4 is obtained as the optimal one with the limit of 7, < 0.005.

gy = 22.4042 — 10.0977u® + 1.8842u, >
—2.4647157 — 0.16734,
g, = 58.9093 +0.0233u] % — 0.1382u5"
—0.0425u, % — 0.0325u; * — 00132444
—0.0386u577 — 0.00624"* + 000064, *. (6.27)

The characteristic vector of the system includes the variable g; aleng with the variables
¢3 and g4.

Two-stage scheme

There are different ways for solving the two-stage scheme of long-range quantitative predic-
tions of this problem [48], [50]. The latter work is proven to be the best heuristic approach
for this scheme. We present here both approaches for giving an idea of using different
heuristics.

First approach: Examining the above system of equations, one can easily establish that the
vector of output variables consists of g3 and ¢4, and the vector of inputs is g1, u;, w2 and us.
The variables ¢» and ¢s are excluded from further consideration,
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The two-stage scheme comprises of identifying the average annual models and the system
of seasonal models and the optimal system of equations to be selected from the both using
the prediction balance criterion.

In the first stage, for identifying the average annual models for the variables Qs, Qu, 1,
Uy, U, and Us, the harmonical and the single layered combinatorial algorithms are used.
The harmonical algorithm is recommended when a large number of data points are available,
while the combinatorial algorithm is recommended for a small number of input variables.
The finite-difference scheme with the delayed arguments considered in the combinatorial
algorithm is

QE(T) =dyt alQi(T—t) + agQi(T—l) oot ainrT—m)’ (6‘28)

where T denotes the number of the year.

Harmonic models have shown better performance than the finite-difference models ob-
tained from the combinatorial algorithm for the variables Q. 04, and U; with five, ten,
and eight harmonic components in the trends, correspondingly. The predictive models ob-
tained for the variables @3, U, and U5 are insufficiently accurate; variables U/; and U5 are
excluded from the future consideration. Along the four variables O, Oy, ), and U, con-
sidered, the variable Q4 is called the leading variable because of its better annual predictions.

In the second stage, the combinatorial algorithm is used to obtain the seasonal models
for the variables g3 and g4 having the following type reference functions:

X = a[)+¢111,\’1”7h.1.‘J + arx) + ds3x; + 4.X

. t-2.1) r=3,1 a.T—n
+a5x2(r,7‘) + aﬁxz(lfl,T) * a7x2(:—z,T; + asxzu—s,’n + agm(! T-n
+a10X2(T' + a“Xg(T_” + a12X3(.I.)
+ai3Xs . +aul, +as Ui, (6.29)
where 1 and T denote the season and year; x| = g3, X3 = g4; Xoq, = Qag» X3p, = Q1 and

Uy, are the average annual values at the year T.

Similarly, the reference function for the variable x; is considered. The reference functions
can be expanded further with the trend equation of two-dimensional time read-out and with
the variables of x3 = ¢ and u; and with their delayed values according to the data points and
allotted computer time. The equations containing the variables x, o7, and xp 7, neans that
during the step-by-step predictions both equations must be mtegrated jointly—the system
of two equations use their estimated values.

Here, for cach season five best models are selected for the leading variable x; and one
model for the variable x; according 1o the criteria minimum-bias and prediction. Using
the prediction balance, the optimal system of equations is selected for each season. This is
done by using the seasonal models of the output variables one after the other in step-by-step
predictions.

The balance-of-predictions criterion is used for selecting the system of scasonal equations
for variable x; on the total data sample.

b; = Z()Cz(m +X2(;P, + X250 +XQU,J),- — Xi2().n
1

Ci = Z('r2|}v) +‘x2(§p) + x’Z(gul + lef )I +X12ﬂ,r|

N N
i=1 =1
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where Xa,,,, X2p)» X2, a0d x2 , are the predicted values of the variable x; for winter, spring,
summer, and autumn, correspondingly; and Xj; ,, is the predicted average annual value of
the variable X,. There are a total of 5* (= 625) formations of system of equations evaluated
for their predictions. The optimal system which is found to be better has the value of the
criterion By, pin = 0.06.

The balance of prediction criterion for both the variables x; and x2 is evaluated using
the criterion as a system criterion

= /(B3 +B}), (6.31)

where B,, is computed the same way as the variable x;, but only on the interpolation interval.

Second approach: In the first stage, an algorithm similar to the objective systems analysis
is used for sorting the systems of equations only for those variables 0y, O3, and Q4 that
appear in the characteristic vector. The trend component is included into the equations. The
complexity of the models is increased by replacing the addition of polynomials in the right
side with multiplication. This means that it indicates switching to nonlinear equations or
equations with variable coefficients.

Three layers are necessary for comparison because of the three variables. The multilayer
algorithm is used to select the best models at each layer because of the large number of
input variables.

The first layer consists of three equations with 9 x 5 = 45 terms in the right side of each
equation.

o 2
Q’(T) ={gp+unT+aT+ ag.U](T) + a4U1tT7”
as UZ(T; + af,Uz(T_” + (17U3(T) + agU3(T_”)

(A +a9Qip  +awQip_, +anQiy_, +anliy ). (6.32)

The second layer consists of three systems of two equations containing the 8 x 3 x 3 =72
terms in the left side of each equation;

Qi(T) = (au +a1T+a2U3m +(13U1(Tu“

a4U2m + as Uzdln + aﬁU3J) + a3
(D +agQi, | +asQiy )
(@10Qq, +anQiy_ +anl;i; ). (6.33)

(Tfl))

The third layer is a single system of three equations, each of which contains 8 x3x3x3 =216
terms on its right side;
Q’}T) =(ap+a; T+ azUl(T) + aj Ul(T—l)

ay U2(T) +asl/y + dg U3(T; + 4y U3(T., ”)

T-1n
(] + agQil,T*l) + agQiLT——?))

‘(amQj{ﬂ +an leT—lJ + aan'(Tq))
(a3Qup +auli,  +asQiy ) (6.34)

If the total number of data points permits, one can introduce the moving average terms
as inputs into the equations. Here another difference from the objective systems analysis
is that the optimal model is chosen using the system criterion of prediction based on its
step-by-step prediction accuracy. If the prediction error of any equation of a system is above
5%, then that system is eliminated from further sorting.
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The optimal system obtained has two equations for the variables Qs ., and Q47

The predictions of the annual values of the variables 03 and Q4 are obtained by step-
by-step integration of the optimal system of equations obtained above. Stability of the
integration is ensured by the explicit form of the pattern used; this means that the delayed
arguments identical to the output variable used in the equations. In doing the step-by-
step predictions, the future values of the external influences /), U/>, and Us are needed.
Harmonical algorithm is used successfully to obtain the optimal harmonical trends of these
variables. The predictions using the harmonical trends which have the prediction errors
< 0.05, are used for step-by-step integration of the system of equations. If the harmonical
trends of the external influences are poorly predicted (> 0.05), then they are treated along
with the variables Q3 and Q4 and the order of the systems of equations is increased with
those external influences.

In this example U; has achieved better predictions with the harmonical model with
the norm (< 0.05). The other two disturbances U> and /3 could not achicve the norm.
The system of difference equations in the output variables are Q; 1> Qa7 Uz and Us .
Harmonic predictions of U; and step-by- step predictions of {/; dnd U helpcd in predlclmg
the Q5 and Q4 to the year 2000. The variable (4 is chosen as the leading variable becausc
of its better performance than the other two output variables and the best F =10 models for
the leading variable are selected by using the prediction criterion.

When we are sure that the statistical characteristics of the predictions are stable, we can
use the statistical crileria of stability of moments or the stability of correlations to select the
best F =3 models out of the 10 selected models of the leading variable,

At the second stage the nonphysical scasonal predictive models are identified. Here the
two-dimensional time-read out is used in constructing the models and the arguments of the
models include both seasonal and annual values. The objective systems analysis is used with
a general form of the additive type descriptions of the three output variables ¢y, g3, and ¢4.
The two-dimensional time trend is considered in the descriptions.

In the first layer, there are three first-order systems, one for each output variable with
18 terms on the right side of the quation,

Giy, = Qo+ art+ wl + (1312 + m,T2 +asu, , + aﬁU](T

+a7us +ag Uz(.‘,-.J + agli3 1 +appl/a

(Ve
tanQip +angi,  p +ang, o, +aaQip

alsqi(r,T—u + amq‘-u.Tﬂ; + a”Qi(T—z)’ (6‘35)

it, 1)

where i = 1, 3, and 4; and ¢ and T denote the season and year, correspondingly.
In the second layer, there are three systems of second-order equations with 26 terms on
the right side of cach equation as shown below:

_ 2 2
Giy 7, = ap+ait+axT +axt” +a4T +a5u1(,'T}+aﬁU]'T)

+a7u; + Qg UQ(T, + agu_;um + amU_ng)

. T

+allQi('I'1 + a12q1~([71_r, + 611361,'“”2‘7,1 + a14Qi:T—1)

aisqiy r_,, T 06di, 7, + A11Qi

+algqi-(t.?") + angj(T) + azoqf(z—l.T) +an qfﬂ--2,T| + azzQJ‘(T-l.

anqj, r_,, * a2adj, p_, t @250, (6.36)
where i,/ = 1,3, and 4; i #j. Similarly, one can write another equation of the system for
the output varlable T

Consecutively, 1he third layer has a single system of three equations with 34 terms in
each equation.
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The best models are selected for each season separately in the form system of equations by
using the prediction criterion. The seasconal predictive models for the external disturbances
are identified as it was in the case of annual models. Using the prediction criterion, the best
F =10 systems of equations are selected for the leading variable g.

Next, the complete sorting of the annual and seasonal models are made and evaluated
by the balance-of-predictions criterion,

1
b; = [Qun — 7 (@on ¥ Qi + deawy + alis

N,
B* = > b} — min, (6.37)

=N

where b; is the balance relation for the ith year and B is the total balance on the interval
N o Na,

The overall sorting on the selected models from the annual as well as seasonal models
involves 3 x 10 predictions. The optimal system of equations for the leading variable g, is
selected according to the balance of predictions criterion.

A measure of success of the modeling is the global minimum achieved on the balance
criterion; the error must not exceed 5%. If it exceeds, the freedom-of-choice of models at
both the stages needs to be broadened to increase the volume of sorting and the divergence
can also be reduced by including more input variables in the descriptions.

3.2 Example—ecosystem modeling using rank correlations

Example 3. Modeling of ecosystems of Kakhovka and Kremenchug reservoirs using the
rank correlations [62], [66].

The objective systems analysis (OSA) used in the multilevel iterative algorithm which is
described in the above example serves for singling out the least biased systems of equations
by establishing the relations of the modeled object. This determines the set of characteristic
variables of the object and its simplest physical model which is suitable for a short-range
forecast. This set is used to find a nonlinear model of the object which improves the
forecast. In case of a large amount of data, it would be easy to take into account more
delayed values of the arguments, and to obtain dynamic and nonlinear models.

The best structures of the individual equations are obtained by using the single-layered
combinatorial algorithm. Although the inductive learning algorithms are developed for use
with a very short data samples, there are limitations in using the single-layered combinatorial
algorithm. Experiments spread over time and experiments spread over space are assumed
to be equivalent to increase the number of conditional equations. This means that the
observations that are spread in space (over the stations) and the observations that differ in
season number possess equal validity. The variables of the object are selected from the
general set of variables indicated at the start of the investigation of the hydrobiological
experimentations and are usually very large in number. If all the variables are considered
along with their delayed arguments in space and time, it increases the computational volume
of the combinatorial algorithm. A rank correlation method is used to classify the initial
variables. A modified version of the OSA algorithm allows one to eliminate the arguments
whose rank correlation is of modulus unity. The equations with high collinearity between
the arguments are eliminated and the ill-conditioned matrices are avoided.
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The modified objective systems analysis was used independently for analysing the ecolog-
ical systems of Kakhovka and Kremenchug reservoirs. Here we present briefly the general
procedure used in the analysis. The averaged seasonal values are calculated from the data
obtained at six stations in the middle and lower part of the reservoirs. The initial data
obtained on the avearge seasonal values of 37 state variables and four external influences
in spring, summer and fall of a year has of 18 years. The following notations are used for
some variables;

X2 — chromaticity (degrees),

Xs — oxygen content (mg/liter),

xg — bichromatic oxidizability (mg/liter),

X9 — suspended particles (mg/liter),

X1; — nitrates (mg/liter),

Xj2 — nitrites (mg/liter),

X1 — soluble iron (mg/liter),

xj7 — total phosphorus (mg/liter),

x31 — zinc (pglliter),

X35 — organic phosphorus (mg/liter),

x27 — biomass of blue-green algae (mg/liter),

x30 — number of phytoplankton (millions of cells/liter),
x31 — number of blue-green algae (millions of cells/liter),
uy — water temparature (°C), and

u> — effective sun’s energy

For calculating the rank correlation, all seasonal mean observations are given three values
of rank {1 for the minimum value, 2 for the medium value, and 3 for the maximum of the
three values). The paired rank correlation coefficients are determined from the Spearman’s
formula [72],

65(d?)

ij,xk =1-
where S(d?) = Zﬁx d?, d; is the difference of ranks of the corresponding pairs of observations
of the variables x; and x, and N is the number of observations. All variables can be divided
into three groups (classes I, I and III) with respect to the existing three points (spring,
summer, and fall).
The delayed values of the arguments are not taken into account because of the small
amount of data. According to the modified OSA, the complete equations from which the
sorting of systems of equations is generated belong to one of the following forms:

xl = dy +a|,\J" + agx"’ + szl + aqhyp
)C” bu+b|x1+b2x’”+b3ul + byitr
= co+ o) + oo + ey + e, (6.39)
where x', x”, and x/" are the variables from the first, second, and third classes, respectively.
The single-layered combinatorial algorithm is used with the symmetrical criteria of Mbs
and A{C) to select the set of possible system of equations with various composition of the
output variables. For example, the following optimum system of equations is obtained in
case of Kremenchug reservoir.
Xy = 78.0 — 2.57“1,
17.0 — 0.4u,,
12400 — 166x2; 17, = 0.006, (6.40)

{l
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where x3,x6, and x3; belong to the classes I, 11, and III respectively. We use the notation
x=xy, X" =x,, and x = x3y further.

Based on the prediction errors, the variable X' is chosen as the leading variable which
is predicted better than the other two.

The two-stage scheme. In constructing the forecating model of mean annual values, the
following linear form of the complete equation 18 used,

! 'l { 'l 'l
‘X(T) = dp + a1X(T_1) + a2X(T72) + a3X(T) + a4X(T_1) + a5X{§~_2)
11 Tl 11
+a6X(7) + a7X(T7]) + agx(T__z) + do U](T; + ayn UQ(T) +aT, (64—1)

where upper-case letters denote the mean annual variables; 7 is time in years; and the
equations for X(}, and X{{, are analogous.
These three equations are integrated step-by-step jointly to obtain the yearly forecast.
In obtaining the seasonal average forecasting models at the second stage, the following

complete descriptions are used.
i 1 7
Xy = G0+ @IX(_y gy + QX gy + @3 poyy + AsX{n +asXG_y 7y
7 I 7 1 i 7]
Ha6¥(;_2, 1+ @7X{ 1y + AsX 71y + QX {7y + 10X 11y + NGy
i H i
+a12xf,,n + a13x{,’r__l) + a14Xm + asiy + a1z, (642)
where 1 and 7" denote the season and year, correspondingly: equations for x{} ,, and x{[';, are
written analogously.
The system of mean seasonal equations are integrated season by season to obtain the
forecast.

For example, the following system of equations for annual model of Kremenchug reser-
voir is obtained as one of the best:

X!y, = —18.0 + 0.00147X(7, + 5.58U,
X0, = 7.78 +0.284X[;_ |, — 0.00052X(7_,,
X[ = —817 — 67.5X(, + 214U, + 0.811T. (6.43)

Similarly four more sytems of equations are selected for future evaluation; i.e., F = 5. The
vilues of the external disturbances are taken according to the given scenario.

By the combinatorial algorithm, the seasonal forecasting models for the reservoirs are
found; there are three equations in the system for each season. A total of five systems of
equations (F = 5) are chosen for each season. The best one among them is given below for
the Kremenchug reservoir:

(1) winter:

Xy = 0.00926x01 | - — 2.59x() 4y +0.729x(, 7, + L15X(7, — 26.1us,
Iy = 1.06X(5, +0.706u,,
o = —0.0155x, 7, +0.108x{] ;, — 0.185x]_, 1,
—0.0223x{"_ |, — 0.00002X7, +0.769uz;

|

(i) spring:

Xy = —4.02x ;) — 00839, +0.243x(,_ 1, + 1.15X{r, +2.61uz +7.06,
= 2.02x) | 1, +0.834X(,,
M = —0.501x,_y ¢ — L1, 5 — 2.75x(" 1

~0.0432x1 . — 0.0543X £ 23 1y — 10.1us;
77— (T
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255 APPLICATIONS
(iii) summer:

X(,.. n = —2. 351‘([! 1,nt 0.0267 (, 1.t 0.584){{,’7‘_1) + 1‘04X(IT)’

Xy = 0.0669x(,_, 7, +0.482X17,

= —13.8%( 1) — 332 _, 1 +2.93407 |
~0.0906x(,r_ 1y +2.68X(7, + 48.81) — 13.1uy;

(iv) fall:

X7 = —0.00205x{"y, +0.834X/,,,
O = 0002287, +0. ’591Xm,
o = 4.95x, T)+ 15.6x(, 1, +62.0x"_, 1,
+0.32x(L | 7y — 033350, ) +0.892X/% + 298 0us. (6.44)

In the next step, the balance criterion is used in sorting the forecasts of the leading
variable X/,

T
1 : .
bi = Xi = S0 + X+ Xao + X))t BY =Y bT — min, (6.45)

where T, is the anticipated time.

It is necessary to use different schemes as applied above in obtaining the annual and
seasonal forecasts; i.e., the annual forecasts are obtained by a one-dimensional linear schere,
whereas the seasonal forecasts are obtained with a two-dimensional time readout.

In evaluating the balance criterion, a total of 25 variants of forecasts (5 seasonal and 3
annual) are carried out and the optimal annual and seasonal models are obtained for the
leading variable.

Overall we can say that the calculation of the rank correlation coefficient of data helps
in eliminating the collinear factors and thus allows the reduction of computational volume
substantially.

4 MODELING OF ECONOMICAL SYSTEM

In economical system modeling, variables are divided into exogenous or external; i.e., those
specified outside the model and introduced into it, and endogenous; i.e., those obtained
within the model. This means that the input variables are exogenous, while outputs and
state variables arc endogenous. Sometimes, one variable may be exogenous lo a particular
model and endogenous to another. In the beginning of the experimentation, it is often
not known which variables will be selected for inclusion in the equations; and it is worth
adopting a technique to distinguish the varaibles. The ratio of the variables exogenous to
endogenous and their participation in the model determines the extent to which the model
1s open or closed,

The objective systems analysis (OSA) makes it possible to find an autonomous system of
linear algebraic or finite-difference equations that is optimal for the given objective criterion
assuming that all variables are the system (internal) variables, the “status quo” scenario.
The exogenous variables are not indicated a priori at the beginning of the analysis. This
technique avoids the a priori resolution of the difficult and the controversial question: what
extent is a variable exogenous. Specialists select the exogenous variables from the set of
variables that figured out in the system of equations picked by the computer.
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MODELING OF ECONOMICAL SYSTEM 257

Step-by-step integration of such an autonomous system of equations yields short-range
predictions without any special control of the system. This first level scenario often proves
useful for showing the use of control 1o get better processes in the chject being modeled, or
to get a better estimate for the near future. To proceed with other scenarios, the variables
need to be divided into endogenic and exogenic variables or output and input variables.
Furthermore, the input variables are to be divided into external disturbances and control
variables. This separation of variables is usually done on the basis of physical considerations,
which contain the element of subjectivity.

Here various examples of economical system modeling which represent different sce-
narios in obtaining the optimal systems of equations are presented. They correspond to
the modeling of British economy and USA economy based on the studies conducted by
Ivakhnenko and his coworkers [40], [41], [38], and Klein, Mueller and Ivakhnenko [76].

In the first example {(Example 4, modeling of British economy) the descriptions are
considered with linear static elements described by algebraic equations. It was proven that
the possibility of changing the control actions is severely limited in such systems.

The second example (Example 5) is the continuation of the first one with an introduction
of finite-difference equations with one delayed argument. It is proven that the modified
systems analysis is useful in identifying the macroeconomic variables for long-range pre-
dictions of up to 10 to 15 years. The predictions of these variables can serve as a basis
for estimating other economic indices used in macroeconomic modeling of a country. A
solution for the problem of control action promises to design more efficient systems based
on the control criteria and control actions.

The third example (Example 6) is meant for briefing the idea of modeling US economy
by extending the delayed arguments in the descriptions. The selected system of equations
1s used to measure the prediction accuracy on the average quarterly values.

The fourth example (Example 7) is the result of extended studies on British economy to
adopt a special procedure that measures the causc-ctfect relationships among the variables.
The degree of exogenicity of the variables is defined on the basis of a harmonic criterion.
Here the external influences are included in the descriptions for studying the possible changes
in the system.

4.1 Examples—modeling of British and US economies

Example 4. The OSA at the level of trends for modeling the British economy.
Usually, a stationary process is represented as the sum of low-frequency and high-
frequency components;

m

g =/ + > _(A;coswit + B; sinw;), (6.46)

=1

where the low-frequency part f(z} is called the quasistatic part or the trend, and the high-
frequency part is called the dynamic remainder. The former is represented as polynomials
or sums of exponentials, whereas the latter is expressed as a finite-difference equation or a
harmonical trend. The structural complexity of these functions is uniquely determined by
the inductive learning algorithms. One should understand the uniqueness of the selected
trend as a single completely defined optimal structure of the equation of the trend and that
this uniquely determines the dynamic remainder.

In the sense of objective systems analysis, a system of algebraic equations describing the
trends of the output variables is used at the level of trends, and a system of [inite-difterence
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equations is used at the level of the dynamics. These both results of analyses are different
because they are related to different mechanisms of statics and dynamics. The coefficients
of the former give the interrelationships among the variables, whereas the latter give the
interrelationships among their differences.

Frequently, the object itself suggests the type of analysis required. For example, the
activity of an aquatic ecosystem is not determined by the level of just one variable like
the biomass of phytoplankton, but rather by the rate of its change under the action of
external influences. This means that the analysis of dynamic interrelationships is important
for ecosystems. For economical systems, it is more important in analyzing the coarse and
interaction of the variables.

In general, the operation of the basic inductive learning algorithms is very similar in
obtaining the optimal trends and the dynamic remainders. In a given set of multivariables,
a nonautonomous physical model in a state space that does not contain the time coordinate
is obtained with any algorithm. In case of multilevel algorithm, objective system analysis is
used as a first step to obtain a set of output variables characterizing the object and then the
two-stage approach is used in time space to obtain an autonomous nonphysical predicting
model of the trend or remainder.

The general scheme of the multilevel algorithm at the level of trends is discussed below:
(i) the table of initial data sample is supplied, (ii) objective sysiems analysis with linear
algebraic equations (not including the time coordinates) is conducted and a characteristic
sel of output variables is determined, (iii) by the objective systems analysis, the best F,
mean annual models are identified vsing the systems of nonlinear algebraic equations in-
cluding the time as an argument (7, 72, - - -) for the output variables, (iv) the best Fa(< F))
systems of equations are selected from the above annual models using the stability crite-
rion of multiple correlations, (v) by the objective systems analysis, the best F; quarterly
systems of nonlinear equations including the time coordinates (¢, T, 1%, 72, - - -) are identified
for the output variables, (vi) the balance criterion of predictions is evaluated by sorting the
predictions of the F> annual models and the F3 quarterly models, and (vii) the system of
equations with optimal complexity is given with their predictions.

The notations x and « denote the quarterly values, X and U denote the annual values of
the variables and of the external influences, and ¢ and T denote the quarterly and annual
time coordinate values. The data table should at least contain the data of one external
influence variable to maintain the static stability of the system of linear equations. This
rigid necessity does not arise in case of nonlinear equations. The data is separated into
three sets A, B, and C.

The single layer combinatorial algorithm is used to select the best structure of each
equation at each layer of the objective systems analysis according to the minimum-bias 7,
and regularity A(B); and the system criterion of minimum- bias Tlsg, 40d prediction criterion
A(C) are used in further analysis of the equations. Keeping in view the drawbacks of the
modeling such as multiple values of the predictions and the presence of noise in the data,
a confidence level D is fixed so that Ts e, < D. Usually the confidence level is kept below

the value of 10~*. This explains why the algorithm chooses an optimal system with the
least noise having the most complete informational basis with the necessary state variables
and the external disturbances. In an ideal data (without noise) the algorithm indicates that
all systems of equations with complete information are of equal value.

Identifying the process of inflation in case of British economy

The following mean annual values of 26 variables are:
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X — the national product in million pound-sterlings,

X, — the energy consumption in million tons of conventional coal,
X3 — the steel production in millions of tons,

X4 — the automobile production in thousands,

Xs — the companies’ revenues in million pound-sterlings,

Xs — the individuals revenues in million pound-sterlings,

X7 — the savings in million pound-sterlings,

Xg — the capital investment in million pound-sterlings,

Xy — the capital investment in the public sector in million pound-sterlings,
X1 — the capital construction in percentages,

X1 — the index of industrial production in percentages,

X2 — the wholesale costs for materials and fuel in percentages,
X113 — the volume of retail trade in percentages,

X14 — the index of retail costs in percentages,

X5 — the registration of new automobiles in thousands,

Xjs — the purchasing value of the pound in percentages,

X7 — the avearge wages in percentages,

X135 — the number of unemployed in thousands,

X139 — the number of employed persons in millions,

X2 — the number of employement vacancies in thousands of working places,
X371 — the labor productivity in percentages,

X — the exports in million pound-sterlings,
X>3 — the imports in million pound-sterlings,
X5y — the current balance in million pound-sterlings,

X>s — the money supply (group 1) in million pound-sterlings,
X>6 — the money supply (group 2} in million pound-sterlings,

)y — the tax rate on the company’s revenues,

/s — the tax rate on the individual’s incomes,

Uz — the government expenditure in millions of pound-sterlings, and
Us — the cost of oil in percentages.

Data that covered 15 years (1964 to 1978) were used from the “Economic Trends: Annual
Supplement of 1980 Edition, London.” The data 1s divided into three sets as A+ B+ C =
6+6+3.

The results of the OSA and the best systems of equations obtained as a result of the
chosen confidence level are given below:

The system of equation at the first layer is

(D

X4 = 33.11 — 63.880; + 1.575Us; (6.47)
Ny, = 0.0002534

The other number of systems obtained below the confidence level are:

(II)

Xe = —22.28 +3.9060/; + 1.198X 14,
X3 = 18.7 — 3.4370 + 0.8334X,, (6.48)
X3 = —1.89 +0.2259X;

s, = 0.0000225;
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(1D

Xe = —22.28 +3.906U, + 1.198X1,,
Xz = 4729 + 1.967U, +0.4364X5 — 0.2653X 4, (6.49)
Xia = 187 —3.437U, +0.8334X;;

Msps, = 000003024

The system [V consists of the equations for X and X4 as they are in the above systems.
The systems II, III, and TV have achieved the limits of confidence level in this analysis; the
system IV has attained the giobal minimum. The drawback of using this system is that it is
statically unstable and it is admitted in the later works that the selection of control actions
applied in the system to make it statically stable is not quite correct. Further developments
of the modeling of British economy is described in the Examples 5 and 7.

Example 5. Modeling of the British economy using one delayed argument and without
specifying the external influences.

This example illustrates the extension the use of the OSA in modeling the British economy
with the following features:

(i) It is assumed that the study consists not only of linear static elements described by
algebraic equations, but also of links with one delayed argument, which is also called the
first-order linear link.

This can be more generalized by considering the second- and higher-ordered links which
can be replaced by a sequential combination of first-order links.

(i1) The exogenous varaibles are not indicated a priori at the beginning of the analysis.

(ti1) The delayed arguments in the equations enable the selection of equations on the
basis of the prediction criterion i or A(C), where / indicates the step-by-step prediction
integration and A(C) indicates the error on an examining set C:

o (x — &)
ANC) =) i <10, (6.50)

VI
= (x — X);

where x, X, and ¥ indicate the actual, estimated and average values of the variable x.

The selected equations satisfy the objective characteristics of both the criteria of minimum-
bias and prediction; this means that the system criteria are used wherever applicable in the
analysis of the systems of equations.

The data and the data separation are the same as in the previous example.

The OSA algorithm is given as below:

The algorithm consists of several layers with gradual increase in complexity of the
equations. The single-layered combinatorial algorithm with the two criteria described above
1s used at all layers. During the selection, the equations with A(C) > 1.0 are excluded from
the search as they contain false information.

The following general form of the polynomials are considered:

(i) the first layer, the equations with not more than three terms of the form

X;

T =G0t a1 X

iy * T, (6.51)

where T is the time coordinate in years;
(i) the second layer , the equations with not more than five terms of the form

Xf(TJ =dot alXicT B + azT + a3XJ(T) + a4Xf(T—1); (6'52)
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(ii1) the third layer, the quations of not more than seven terms of the form
XE(T) =dy+ (I]X,'(T_U + azT + a3leT) + a4Xj(T_“ + a5Xk(T) + af,Xk‘Tf 1 (653)

and so on until the number of terms not exceeding 18 to 20 as the limit of the combinatorial
algorithm or the layers are extended while there is at least one equation among all in the
last layer satisfying the condition n,, < D, where D is a certain “confidence level” chosen
on the basis of experience.

Systems of equations for prediction and control

The above OSA is applied in modeling the British economy. In addition to the 26 variables
used in the previous example, an additional four economic indices are used as input to the
algorithm. The indices picked by the computer are

X37 — the budget deficit in million pound-sterlings,

Xzg — the trade balance in million pound-sterlings,

Xz9 — the current balance in million pound-sterlings,

X3 — the overall government expenditure in million pound- sterlings,
X31 — the tax on private income in million pound-sterlings, and

X3; — the corporate tax in million pound-sterlings.

At the first layer, one equation below the confidence level (D < 107%) is selected,

Xng =—1.017+ 1.293X2, s (6.54)
s = 0.00004062.

At the second layer, ten equations are selected and the best among them is

XZZ(T) = —1.032 + 1'297X22(T—-1) - 0.003908)(29‘“, (6.55)
ps = 0.00002226.

At the third layer, eight equations are selected and the best among them is

Xiaq, = 18.64 + 1.064X, ; — 0.2526X,,. | +0.0653X2, . (6.56)
Tbs = 0.0000376.

The selection is terminated further because the minimum-bias begins to increase from the
fourth layer onward.

The important feature of the algorithm is that the variables selected at the previous layer
are refined by supplying additional output variables and arguments at the successive layer.

In the example given here, the most representative output variables Xy, Xg, X1, X4, X7,
and X; are selected at the first and second layers. At the third layer, variables X4, X53, and
X3p are added to this list. The best equations with least minimum-bias from the three levels
are obtained as below:

Xig, = —10.99 +0.145X, ;. +0.002955X25 . +0.001323Xz,_ ;
ps = 0.8902F — §,

Xog, = —16.76+ 1.033X,4, +0.4645X;3  ;
s = 0.1.524E — 5,

XS(T; = —8.381 +D.002038X25(T”h;
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Mpe = 2.78E — 5,
X]] = 2587+ 07407X1]
Tps = 6.936F — 4,

T-n’

147, = 18.64+ 1.061X, , — 0.2526Xe ,  +0.06531X53; ;
Moy = 0.376F — 57
X174, = —5.045 — 1.518T +2.159X ;, — 0.02077Xy3 ;,
+0.06109X27,;. 5
Tps = 2.568E — 5,
Xn(T) = —1.032+ 1-297X22(7-7” - 0'003908X29(T);
Nps = 2.226F — 5,
Xp3gp, = —3.392 — 0.007218X53,, , + 1.013Xx; ;. — 0.09933Xag.,.;
X3ﬁ(-n = 56+ 0001638X26(7 71);

The algorithm has yielded a system of nine equations with 14 variables. Values of five
variables Xos, Xo6, X207, X28, and X, are to be selected based on the nature of the problem
or by using auxiliary equations. The time variables in some of the equations, primarily of
those selected from a set of arguments are assigned by specialists for prediction of norms.
The equations are tested for their stability; the roots of the characteristic matrix equation lie
within the limits of the unit circle. Step-wise predictions reveal that the processes converge
rapidly with the trends exhibited by them. This means that the obtained system of equations
can be used for identifying the system structures and for short-term predictions.

Here we are not presenting the two-stage approach used for long-term quantitative predic-
tions as used before, but the solution of a control problem specified in the current example.
Usually in solving the economic control problem, experts indicate not only the variables
related to control actions, but also their number and interrelations in the form of objective
criteria.

Solution of a control problem

Control variables are chosen by the specialists either from the set of characteristic variables
from the OSA or from the variables that correlate fairly with the characteristic variables.
This is checked according to the values of the external criteria for the auxiliary equations
formed for these variables. It is also necessary to check that the selected control variables are
adequate to satisfy the controllability conditions (according to Kalman). These conditions
might require expansion of the control variables or a change in the control objective.

For example, let us assume that the variable X>; (budget deficit) is chosen by experts as
the control action and the control objective is defined as maintaining the ratio of the retail
price index to the average wages (X|4/X}7) at the year 1978 level. The following basic
system’s equations are used to build up a closed system with the selected control variable
X»7 as one of the arguments.

Xl(?') = —10.99+0. 145X1(T" b + 0'002955)(25['[; + 0-001323}(26(1—_”;
s = 0.8902E — 5,
Xi7,, = —5.045 - L5187 + 2.159X, , — 0.02077Xz,,, + 0.06109X 27, :
Ths = 2.568E — 5,
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XM(T) = O'6Xl7lT)’ and
Ay, —=06AX7,. (6.58)

The ratio is given as 0.6; that does not mean that wages rise faster than prices. The fact is
that the British economic statistics take the year 1975 as the base year for computing the
average wage. If the same base year were to be used for the control problem, then the ratio
would be 1.56; this means that the price rise outstrips the average wage as compared to
1976.

The system of auxiliary equations 1s obtained using the combinatorial algorithm with the
minimum-bias criterion and the prediction criterion. The reference function considered in
the algorithm takes into account all the variables with one delayed argument.

Xip =a+aT+aT +asXip |+ X, +cXi,,), (6.59)
i D
where i =25,26,27; and j = 1,11,14,17,23,26,27.
The system of equations identified are

Xosg, = 2729+ 0.4277X0s | +131.4X, ;. — 47.79Xy4 . +58.27X)7 ,,
+0.1648X26 ;, — 0.4907X36,_ i 1 = L.258E — 3,

Xos g, = 6024 +0.9666X,_ +566.7X1, —310.3X4,,
—611.2X14 7 +2.315X0s5, +24.77X07 5 1y = 9.29E — 4,

X4, = 88.29 + L188T" — 1.61X17, + 1.304X17 . | — 0.013Xo5,
+0.009885X,5 . | — 0.004399X2 ;5 7y = 4.306E — 1. (6.60)

The resulting closed system contains six equations with six variables. Kalman’s controlla-
bility conditions are satisfied. Step-wise integration of the system yields the predictions to
achieve the ratio ( X14/X,7 = constant) through variation of budget deficit X,; (Figure 6.12).

Prediction of variables other than the characteristic variables.

Out of forty variables fed into the computer while modeling the British economy, only 14
were selected as the characteristic variables. All other variables were rejected as unsuitable
for modeling continuous consistent features, both as output variables and as constituents of
a set of arguments. This does not mean that the rejected variables are impossible to identify
using the inductive learning algorithms; this can be done as a supplementary analysis. They
can be predicted as a function of time and the variables selected by computer. For example,
the following full polynomial can be used in predicting the number of unemployed:

X18(1-, =aqo+a, T+ azTZ + a3X13(T7“ + (14X13(T”2]
Y BXy, +eXp AKX ) j=1011,14,17. (6.61)
J
The combinatorial algorithm with the criteria minimum-bias and prediction selected the
following equation:

Xigg =238.9-05211X5, , — 10. ISXI(T_) + 26.55X1(T7U;
s = 0.0989. (6.62)

The suggested aproach of OSA described in the example affords a novel approach to
select a system of indices used at various layers of aggregation. Conventional models
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Figure 6.12. Prediction and control action in achieving X,4/X,7 = const. through variation of budget
deficit X_?_’;

normally use many variables and equations describing their interrelations, The system of
indices in a national economic model usually is included with 17 to 130 variables depending
on the extent of process elaboration. For instance, in the project headed by L.P. Klein
(University of Pennsylvania, USA), the model for British economy contains 226 equations,
206 for the USA economy, and 183 for Canadian economy.

Case studies of the design of the control system have shown that the method described
here can be used to design more efficient systems based on other control criteria and
control actions. This opens up a vast area of research. It would also be of interest to
stimulate control criteria of the form X4/X;; = 0.6 + K(T — 15), where T is the time
coordinate in years (7T(j973y = 15), and assigning different values for the coefficient K =
woe,—0.2,-0.1,0,0.1,0.2, - - - to determine the effect of economic processes of relative rise
or drop 1n prices.

One can note that in the proposed method of OSA, prediction and control is also appli-
cable in studying other complex systems.

Example 6. Self-organization modeling of US economy.

The objective systems analysis 1s used in obtaining the system of finite- ditference equa-
tions. The multilayer algorithm is used to identify each equation. The variables are chosen
using the system criterion of minimum-bias and the number of equations is chosen with the
prediction criterion using all data. The data used in the algorithm is quarterly data from
1969 to 1974 [76] tor the following variables:

x; — national product,
x; — real national product,

x3 — national income,
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X4 — personal income,

x5 — deflation of prices of the national product,
xs — deflation of personal prices,

X7 — consumer price index,

xg — whole sale price index,

X9 — private production in man-hour,

Xjp — earnings per man-hour,

Xy — rate of unemployement,

X2 — net running export,

x13 — money supply M1,

X14 — money supply M2,

X15 — rate of 3-month treasury notes,

X165 — usage rate of corporate funds,

x17 — rate of 6-month commercial paper,

x1g — rate of general growth of corporate funds,
X190 — rate of personal savings,

X30 — pre-tax corporate earnings, and

x21 — federal surplus.

The data is separated as even and odd points for the roles of sequences A and B and used
in calculating the minimum-bias criterion.

The OSA algorithm is realized in the example below.

At the first step of the algorithm, the finite-difference models of all variables are synthe-
sized using the minimum-bias criterion.

8 21 8
x:. =qay + Z ajx;*j + Z Z bkj,¥]i~j. (663)
=1

k=1(kz1y j=0

All variables are measured with eight delayed values. Each equation is synthesized using
the multilayer algorithm. In the first layer of the multilayer algorithm 780 partial models
are generated, of which 30 of the most unbiased models are allowed to proceed to the
next layer. The selection continues (from 435 models, 30 models are selected) until the
minimum-bias criterion ceases to decrease. The number of layers never exceeds ten for any
model.

At the second step, further selection of system of equations continues from among the
obtained models of first step. Here the models that yield a good prediction have priority in
the selection process; i.e., the models are selected according to the step-by-step prediction
criterion. From among the models obtained from the first step, eight models corresponding
to the output variables x|, x3, x4, X5, X¢, X1, X3, and x4 are selected and considered as the
sought system, the model of the US economy.

The selection threshold is established such that the obtained system of equations would
be autonomous and convenient for step-wise predictions. After the selection, the estimates
of the equations are adapted using the whole data sample. The system of equations are
given below.

xp = —114.86 + 0.894x]" +0.05625x,° — 2.3476x, 7 + 23.587x,7°
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—18.275x57 + 5.376x57 — 5.5217x7 — 0.8283x7;

Xy = —451.37+0.2563x, 7 — 1. 3502xf;7 ~ 3 231x° +8.1061x,
—140.92x5% — 236.96x,> + 87.045x57 +3.5427x' !
+2.8526x32 +l.2499x’13 + 1.1724x']36,

X, = —238.64 — 84.163x]; + 82.507x," +3.7134x 3% + 0.6916x°,%;

xi = 11.895+ 1. 088xg '~ 0.00551%7% +0.293x, ¢ — 0.2725x 73
—0.086x7;" +0.03914x',7 — 0.00515x",¥;

xh = 5.585+ 0.1306xg 2~ 0.01343x7 — 0. 00243x§;3 +1.2604x%!
—0.2224x57% — 0.04754%,3° — 0.2118x13° + 0.0876x'7%;

xXjp = 0.19596 + 0.6092x,5% + 0. 3788x’ *4+0. 1746x’ 57 —0.34245x8
—0.00001x5% +0.000145x3" —~ 0.00242x/3°
—0.000319%,° + 0. 003319x14 ;

X3 = 67.893 +0.0645x) " +0.0465x,> — 1.0195x5 % + 1.1876x.7°
~0.6898x,7" +35.405x7;7 + 19.755x),7 — 0.4934x13°
+0.18827x)37 — 0.15198x(,8;

xig = 43623 + 1.0298x; " — 18.541x)," + 15.657x);7 + 45.187%57

—0.4316x]3" — 0.4448x,% + 0.1071.¢'°. (6.64)

The prediction accuracy is checked for each equation in the system on the data of the years
1975 and 1976. The range of the residual sum of squares vary from 0.28% to 6.87% for
one year and from 1.23% to 11.44% for two years.

Example 7. Modeling of the British economy for restoration of the governing laws in the
object.

The variables participating in the modeling of a complex object are assumed to have
some degree of exogenicity. In this example, the degree of exogenicity of the variables
15 defined on the basis of a special criterion that is used to find more objective ways of
dividing the variables. The objective system-analysis algorithm makes it possible to find an
autonomous or closed system of algebraic or finite-difference equations that is optimal for a
given criterion by assuming that all the variables in the equations are endogenous or system
variables. If we remove those equations from the closed autonomous system whose output
variables have proven to be exogenic with the greatest degree, then a governing principle
is obtained in the form of an underdetermined system of equations or an approximation
of such governing principle, which is suitable for short-range predictions (a “status quo”
scenario). Further studies on the system yields a number of other scenarios that are useful
for analyzing the object. Obviously, the corresponding equations are not physical laws
reflecting the mechanism of objective modeling, but they make it possible to study the
possible changes by introducing the external influences with respect to an objective control
criterion.

The OSA algorithm is given below:

The choice of equations at each layer is made on the basis of two criteria; the minimum-
bias (1,) and prediction (/). The equations with the criterion value of ;> > 1.0 are eliminated
from the preliminary selection as the equations providing disinformation.

First layer: Equations of the following form containing not more than four terms on the
right side are evaluated.
Xi

=ag+mX;

T hT—n + a2X"\'T72> + a3X"[T~31‘ (6‘65)
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Second layer: Systems of two equations of the following form whose right sides contain
not more than eight terms are evaluated.
X;

= 4ap+ a]X,'(T_]J

+asX; . +asX;

+ azx"(sz)

) * aﬁXj(ﬁ- 2

+ (I3X,‘(T

VB -3

+ a-"XJ-(T—a) .

(6.66)

T—1

Third layer: Systems of three equations of the following form containing not more than 12
terms are evaluated.

X

i = qap + alXi(Tfu + GQX,' + a3X,' + a(,Xj

(T2
) + angm + agXy

T=3 + a4Xf(T) + a5Xj

ta lOXk(T_ 2

T-n
+(,111Xk

T -z

+ar Xy (6.67)

3 T—u (T—%"

All the systems of equations obtained are autonomous; i.e., the number of variables in them
is the same as the number of equations. This enables us to make step-by-step predictions
in the system. The layer by layer procedure continues until it reaches the limits of the
self-organization modeling according to the basic algorithms used in them. The end result
is that one chooses some of the non-contradictory systems of equations, which are attained
below the confidence level set for this purpose.

The minimum-bias criterion as a criterion of exogenicity of the variables:

The original data of the variables exhibit information regarding the changes in them. One
considers two competitive hypotheses to decide which of two chosen variables X; and X; is
cause and effect: hypothesis H) says that X; is effect and X; is cause, and hypothesis H,
says that X; is cause and X; is effect.

These hypotheses can be lested using the single-layered combinatorial algorithm with
the criteria of minimum-bias and prediction; one finds two dynamic optimal models using
the following complete descriptions:

for H;,
Xf(T) = dg+ a]Xj(T_l) + GQX[(TA . + G3Xi.7‘73.
+a4){j(1'_1 + aSXf(Tﬂ) + aﬁXj(T-—Z) + a7X1‘:T73);
for Hs,
Xf(T) = bo + leJ}T—n + bzXf(T—Z) + b3XjaT73;
+b4Xi(T| + ij[‘(T_“ + béXi(T—D + b7Xf(T_3) . (668)

This means that for each hypothesis one finds a model of optimal complexity. The hypothesis
is true for finding which minimum-bias c¢riterion is deeper than the other. This procedure
is suitable only for the variables of dynamical systems—it works without an error with a
sufficiently large sample of experimental data.

A harmonic criterion of exogenicity of variables

Considering each variable in turn as an output variable, let us look at the above dynamic
models. By compiling tables of data approximating the change in the two variables, one
can make expert evaluations on the models obtained earlier. The problem is reduced to
considering one pair of variables as cause and effect, or the other way around.

The peried of the lowest-frequency component of each variable [11], [73] is found using

N—IN-—v

N
S(w) = ; S XO+2) Y X - XO0GE+v) — X)cosew) [ . (6.69)

i=1 =1 =1
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Figure 6.13. Spectrograms of the variables x; (solid curve) and x; (dashed curve) for determining
the lowest frequency

where N is the number of measured data points of the variables Xi(f), k = 1,2;X; is the
average of X;(¢) on N points,

Assigning a sequence of frequencies O < w < m, spectrogram S(w) is graphed until the
first local maximum is obtained. This gives us the period T and the frequency wys of the
lowest harmonic. The period of this harmonic should be the same for the two variables
(Figure 6.13). The phase of each of the harmonic components is then identified by using
the regression equations of the following form;

X; =ap + (a; sinwyt +ar cos wyt) = ag + A sin(wyt + 8,);

Xj = by + (by sinwyt + by cos wyt) = by + Bsin(wyt + 8));

¢; = arctan ﬂ; f; = arctan ﬂ, (6.70)
o> bl

where wys is the frequency corresponding to the first local maximum of the spectrogram.

The criterion of exogenicity for the two variables is given as AE = 0; — ¢;. In dynamical

systems, the cause cannot overtake the effect in regard to phase, and consequently, the

hypothesis H; 1s chosen if AE > 0 (the cause is X; and the effect is X; ), and H; if AE < 0

(the cause is X; and the effect is X; ).

This type of analysis of cause and effect makes it possible to eliminate those equations
formed with the output variables that are formally causes rather than effects. Ultimately, the
determinate system of equations becomes underdetermined, because the number variables
exceeds the number of cquations.
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The results of modeling of the British economy

The above described OSA algorithm is applied for modeling the British economy. All 26
variables participating in the algorithm, both the endogenic variables X and the four exogenic
external disturbances U are treated as equally significant. For the description of the variables
and the data, refer to Example 1. The following autonomous system of equations and the
values of criteria are obtained as below; the values of the prediction criterion i belong to
the set

= —0.5739+0.5197X, ;_ +2.766Xs . — 15.17U;
ng,=1389E—3 and i =2.821E - 1;
Xeq, = —0.5937+2.518Xg  +3.104X5, | +38.74U,
=539V, — 64.54U2; |,
1, = 1.590F — 3 and i = 2.331E — 1;
Xg, = 0.4487 +0.02953X, ;. +0.2508Xs  — 0.555X;
—4.606U,,_, +1225U,, |
n, =4.176E — 4 and i = 5.838E — 2;
Xizy, = 4076 +5229Xs, | +2294U,,  —33.22U,,_
+86.97U,, , — 54.13U,. ., ©671)
N = 4.694E — 4 and i = 3.014E — 1; '
= —5.769+0.03826X, ;. , — 0.2461X,, +2.814Xg
~17.69U,, , +7.553Uy,
N, = 2.902E — 2 and i = 8.91E — 2;
Uiy = 02981 — 0.01838X, . +0.01304X, . +0.006959Xs ,_,
~0.8259U;
M, = 1.893E£ — 2 and i = 2.123E — 3;
Usg, = 0.1425 - 0.01253X, ;. +0.03903Xs, = —0.00358Xs,
+0.005462X 14, 023250, .,
”r]is =3442FL — 3 and i = 8.210F — 4.

-

D
(T—2

2)

T-1

The step-by-step predictions of the variables are checked to the year 1981 without taking
into account any hypothesis to control the system for improving it.

The degree of exogenicity

The degree of exogenicity is used in the search for boundaries in dividing a significant
variable into endogenic and exogenic variables. This is measured for each variable by
= Z}:] AE;, i = 1,7, i #j. The harmonic criterion of exogenicity is analyzed for the
variables of the above system and the results are tabulated in the Table 6.2.

According to the rank of the degree of exogenicity, the variables U and U, proved to be
the most exogenic. By removing the corresponding equations from the system, it becomes
an underdetermined system of equations or governing principle of the system under the
requirements that: (i) it is necessary that the selected candidate models be the result of true
reference functions of the system and (ii) it is necessary that the initial data be sufficiently
accurate. If the first requirement is not true, then the system of difference equations ob-
tained is only an optimal approximation of the governing laws under consideration. With
reference to the second requirement, it should be noted that with the increase of noise in the
nitial data, the OSA algorithm chooses systems with fewer equations. Thus, the physical
model corresponding to the object can be obtained with the minimum-bias criterion only
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Table 6.2. Results of the analysis on harmonic criterion of exogenicity

Varia- AE E Rank

ble X Xa Xz X114 X2s [ Uz

X, - 0 0,123 0.033 0.19 0.2 -0.097 0.449 5
X5 0 - -0.036 0 -0.38 0.092 | 0.0066 | 0.0245 4
Xg -0.123 0.036 - -0.22 -0.05 0.83 -0.081 0.492 6
Xia -0.033 0 0.22 - 0 1.04 0.3 1.527 7
X2 -0.19 0.38 0.05 0 - -1.51 0.031 -0.234 3
U -0.2 -0.092 -0.83 -1.04 0.51 - 0.247 -1.405 1
Ua 0.097 -0.0066 { 0.082 -0.3 -0.031 { -0.247 - -0.4056 2

in exact data. In the presence of noise in the data, the algorithm gives only the optimum
approximation of these laws under the given conditions.

The underdetermined system of equations representing the governing laws or their opti-
mal approximation can be used for constructing other scenarios for short-range normative
predictions that are of interest to us.

Principles involved in short-range and long-range predictions

In the above analysis, when the term “governing law™ is used, it refers to some mathematical
description ensuring a sufficiently accurate short-range predictions of one to three steps
ahead. This means that it is interpreted as an approximation of the characteristics of an
object in a narrow sense. To restore such a governing law, the inductive approach is used
with the minimum-bias criterion.

To restore a governing law in the broad sense and ensure exact long-range prediction with
the inductive approach, one uses the minimum-bias and balance-of-predictions criteria. The
originality of the multilevel approach is indicated first of all by the fact that these criteria are
used at different levels of the analysis. No one mathematical language can exactly express
the true physical or other governing laws that are suitable for long-range predictions. A
single language can be used only for obtaining a physical medel using exact data for short-
range predictions. This is substantiated by the existence of a limiting attainable prediction
time for ali individually accepted mathematical languages. Only multilevel algorithms based
on the balance criterion ensure long-range predictions; i.e., these can be applied for obtaining
the governing laws of an object in the broad sense.

The governing laws corresponding to an economical system should be sought in the
form of a consistent system of annual and quarterly models that ensures an exact qualitative
long-range prediction.

5 AGRICULTURAL SYSTEM STUDIES

Various studies [65], [74] on agricultural systems reveal that fulfilling agricultural production
torecasts, particularly in large irrigation systems remains a difficult problem. Difficulties
arise which seemingly cannot be overcome by conventional modeling techniques.
Problems concerning the control and planning of urigated forms are divided into three
basic groups:
The first group of problems is related to the selection of varieties and hybrids of farm
products that can be cffectively cultivated in soil irrigated with a controlled quantity of
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water, and the optimum planning of the structure of irrigated areas for the entire crop
rotation cycle.

A crop or a hybrid is assumed to be superior if it provides a maximum average yield (¥)
on an observable series of meteorological factors {X = (x;,x2,- -+, x,)} for standard values
of the vector of control variables {U = (uy,u2, -, u;} and a specified limit (4) imposed on
the standard deviation (s) of the yield:

5= L5°0 viX, Uy — max,

s= 25 Vo -9 <6, (6.72)

where T is the number of years in which the meteorological factors are observed and y; is
the crop yield calculated from the meteorological factors of the ith year.

The second group is of problems dealing with crop rotation cycle on each field for
maximizing the production with the given limitations of water and fertilizers. The task of
this group is to maximize the gross yield of a crop-rotation area in hundred-kilograms of
grain (y,) for a known structure of the sowing area:

Ym = Z}{,’(X, U) — max, (6.73)
j=1

where m is the number of fields included in the crop-rotation area; y; is the yield of crop
J» and X{x;,x2, ---,x,) are predicted values of the meteorological factors. The structure of
the optimal model contains the sclected arguments from the vector of controlled variables
(U) for specified crop-yield planning intervals.

The third one encompasses operative production control/ planning of the irrigation-crop
rotation system with the effective use of fertilizer, water, climatic, and technical resources.
Here the goal is to determine the optimum distribution of water resources, fertilizers, and
other yield control factors (U;) that can be used during the ith interval:

1

yi = Z)‘ﬁ(xi,Ui) — max, (6.74)
J=1
where i = 1,2, 3 1s the control interval number (intervals between watering), j=1,2,---,m

is the field number included in the crop-rotation area; and y;; is the yield model of crop j
during control interval i.

On each control interval, a separate yield model is used and the vector X consists of a
combination of measured and predicted climatic factors. The conirol intervals are selected
to be compatible with the phases of development of various crops, but are not longer than
the period between the waterings.

Each of these problem groups requires different arguments of the yield model, con-
trol intervals, and allowed accuracy of solutions. These requirements are usually non-
contradictory, requiring one to synthesize a complex of yield models for each group of
problems. Solving these problems on the basis of the experimental field data and by using
trial and error methods yields no guaranteed solutions to the problem of effective use of
irrigation systems for a given period. But these problems can be adequately solved by
using the production models synthesized on the basis of experimental data obtained from
soil and climatic conditions of a specific irrigation system. This is adressed in the work
of Khomovnenko and Kolomiets [74] by the use of inductive learning algorithms. In this
work, the self-organization modeling is described for modeling of winter wheat productiv-
ily. Various problems arc organized independently to model them with partial models using
small groups of arguments. The experimental data used in this study is collected from one
of the agricultural experimental stations located in Ukraine during 1967 to 1975.
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5.1 Winter wheat modeling using partial summation functions

Example 8. Modeling of winter wheat productivity. Agricultural production depends on
the number of natural factors and on the agro-technology used in the process; i.e., on
the possibility of selecting the control factors. Natural factors can be divided into soi]
and climate factors. Soil factors are mechanical composition and depth of profile (which
characterize mechanical strength, speed of infiltration, water conductivity of unsaturated
soil, and the characteristic of waier retention), aeration, fertility, salmity (which influences
structure, weight potential, and toxicity), temperature, and water levels of the soil. Climatic
factors are temperature and humidity of air, sedimentation, wind, light intensity, length of
the day, and length of the growing period. Some of these factors are independent and the
changes in some make changes in others. These factors influence the soil-climate zone
and determine the possible selection of varieties and hybrids of plants in the irrigated plant
cycle. They have various effects on the production of agricultural products depending on
the period of vegetation.
Three main situations in irrigated soil management are pointed out below:

(i) photosynthesis is limited by factors not related to water delivery, but the water is
limited by water reserves. An increase in water use due to sprinkling either does not
increase the harvest much or has no effect on it;

(i) if both the photosynthesis and water consumption are limited by water supplies, then
the harvest increases with an increase of water use, and sprinkling is most effective;
and

(iii) photosynthesis is affected by factors other than water supply; the water consumption
is not affected by the water supply in the soil. In this case, it is necessary to use
other methods of controling crop production; for example, by increasing the mineral
feeding.

In this example of modeling winter wheat, the following identifiable phenophases of
development are considered:

I — from planting 1o sprouting,

2 — from sprouting to the beginning of tilling,
3 — period of wintering,

— from the end of tilling to stem formation,
— head formation,

— milk formation,

— waxy milk formation,

— waxy formation, and

— complete ripeness.

L= BN N SRT N N

The model of winter wheat harvest is represented in a general form of output and par-
ticipating input variables as

y = f(B,Q,H,N,P,K. T, h1C,
Wl,---,Wg,tl,--—,tg,Tj’,---,T(}’,t?,---,tg,
S};"',Sg,Eu'“,Eo,Rl,'",R9,Nm"',Nm,Nh“"',th,

NG NG IRy B ), (6.75)
where y is the wheat harvest in 100 kg-units (220.462 Ibs)/ hectare: B is the index of the
predecessor; Q is the soil fertility; W is the water in the soil; F is the amount of seed:
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C is the period of planting; N, P,K are the amount of nitrogen, potassium, and calcium
introduced into the soil; 7}, is the sum of minimal temperatures below —10°C during
wintering; £ is the depth of frost in the soil; / is the amount of snow cover; ¢, is the length
of the phenophase; 77 is the sum of effective midday tempeartures during the phenophase;
17 is the average daily air temperature; S; is the number of sunshine hours; E; is the sum of
evaporation from the water surface during the phenophase; R; is the amount of rainfall; N,,
is the number of rain days; N, is the number of days having a relative air humidity of less
than 30%; ty,, tp,, Ix; are the periods of fertilizing; and i = 1,2,---,9 are the index numbers
for indicating the phenophases.

The factors considered in the general form are regularly observed variables at the farm’s
experimental station and the standard observations made by the national meteorological
network. One can also include other factors into the model [64]. The above general form
is analyzed for various aspects of the modeling given below. All models are obtained using
the single-layered combinatorial algorithm.

A special aspect of this modeling is that the described model is replaced by a sclection of
partial models, cach of which is either linear or a quadratic polynomial with small number
of arguments. The action of the remaining factors is averaged and used in representing the
precision of the model. The importance of this approach is indicated by the demands of
the problems under study and also of the availablity of measuring factors in determining
the productivity of crops. The major advantage is that it is simple and considered carrying
experiments 1n accordance with the theory of planning experiments.

Modeling of wheat harvest (v) as a function of the time of planting (C) and the rate of
seeding (H)

The data used in this modeling is obtained during 1967 to 1971 for five years of 525
experiments. The seeding rate was maintained as H = 1,2, --..,7 million seeds per hectare
and the planting time C was from September 25th to October 25th with three variants of
water use; without sprinkling, watering of 1200 m*/ hectare, and watering plus vegetational
sprinkling assuring soil moisture not lower than 80% of the least capacity.

The combinatorial algorithm is used with the combined criterion of minimum-bias plus
regularity. All 525 data points are used in the analysis. The best mode! obtained is given
below:

y = 24.7+4.9H — 0.584% + 0.03HC — 0.0056C* (6.76)

The quadratic character of the model indicates that the model achieves the maximum value
of the optimal norm of planting and periods of planting guaranteeing a maximum harvest.
However, the large bias term and the mean squared error (¢) of 33% on all points indicate
the influence of other factors like the water regime and the climatic factors that are not part
of the model.

To determine the degree of the effect of the water regime, the experimental data points
are divided into three sets of 175 points each and partial models are identified for three
separate water systems:

v = 6.32H — 0.51H* +6.96C — 0.17HC — 1.09C*, =, = 41%,
6.89H — 0.70H* + 15.01C — 0.22HC — 2.46C?, &, = 31%,
11.88H — 0.98H" + 12.37C — 0.49HC — 1.83C%. &3 =27%, (6.77)

»2
y3

where the model for y| is constructed using the data on without sprinkling; the model for y;
is with one watering in the fall; and the model for y5 is under conditions with optimal water
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supply as suggested by agrotechnology. One can see that the accuracy of models increases
from 41% to 27%.

The optimal norm of seeding A and periods of planting C have achieved the above model
for maximizing the harvest with

H1 = 573, Cl = 267,
Hy =5.16; () =3.43;
Hy =537, (3 =2.64. (6.78)

Here the rate of seeding is given in millions of seeds per hectare and the time of planting
in days counting from September Ist multiplied by 0.1. In this way, the optimal period of
planting for wheat without sprinkling and with an optimal water supply is September 26 to
27, and for wheat with one initial fall watering is October 4 to 5. The maximum harvests
of winter wheat for different watering systems are

=27.66; y3,.. =41.13; and ys,, =48.29. (6.79)

Ylmax

Using these values of maximurn harvests for various watering systems, one can construct a
function Y. = f(W), where W is the quantity of water in thousands of m® per hectare lost in
sprinkling. The following water losses are accepted for each case as (i) without sprinkling,
0.1 (moisture supply to assure germination); (ii} one initial watering, 1.2 thousand m* per
hectare; and (iii) total losses to maintain soil dampness not lower than 80% of the moisture
capacity, 3.0 thousand m? per hectare. The second ordered function is considered and the
estimated model is obtained as

Ymar = 26.02 + 16.14W — 2.90W°. (6.80)

This medel is useful in planning the yield depending on the water supply of the sprinkling
system, and also in determining the specific losses in obtaining the quantity of agricultural
production.

Modeling of wheat harvest (y) as a function of the rate of fertilizing (¥, P) and the water
supply (W)

The experimental data observed during the years 1969 to 1972 are used; altogether 168
experiments with 14 different mineral feedings and three types of water supplies were
conducted. The mineral feeding consists of nitrogen (N = 30, 60, 90, 120, 150 acting
units), and phosphorus (P = 30, 60, 90, 120 acting units).

The data points are divided into three sets; each set consists of 56 points for each water
supply. The full description of second-order is used for cach water system and the best
models are selected according to the combined criterion of “minimum-bias plus regularity”
of the form:

vy = 18.1+ 1.2P — 0.069P7 + 0.98N, 2 = 49.3%,
y; = 23.8+ 1.76P — 0.105P* + 1.12N, 2 =9.8%,
yi = 27.0+2.24P — 0.115P? + 118N, ¢2 =12.2%. 6.81)

The lower accuracy of the model of y; with experiments without watering indicates a strong
influence of other factors which are not taken into consideration in the model. Among them
are the fluctuation of natural soil moisture and other controlling and disturbing actions whose
influence is reduced because of improved water delivery in the other models. The increase
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in the values of the coefficients in response to the improved water delivery indicates the
increase of intensiveness of the mineral feedings introduced into the soil.

Considering that the harvest models for three watering systems have the same structure
of the form,

Yi = dio +apnP — a,:PZ + a,-3N, I = 1,2, 3, (682)

and that the effect of water supply on the production is nonlinear, a second-ordered function
is selected for constructing the dependence of coefficients of the above model on the water
supply. The general form of such a dependence is given as

a,j=bU+ijW+d,jW2, i= 1,253; j=0»1a253' (6.83)

After finding the dependencies of all coefficients a; as f(W), the general model of the wheat
production taking into account the water supply and fertilizers used is found as

y = (18.1 +6.7W — 1.17W?) + (1.13 + 0.62W — 0.84W>)P
—(0.065 — 0.05W — 0.011 W?)P? + (0.96 + 0.17W — 0.032W>)N. (6.84)

This model can be used for predicting the harvest depending the nitrogen and phosphorus
additives and also on the water delivery system. One can study the effectiveness of using
water resources for all periods of the watering season under the conditions of deficient water
supplies using the analogous models for crops in plant rotation as functions of fertilizers.

Modeling of wheat harvest as a function of various climatic factors

The data corresponding to the 60 field experiments conducted during 1973 to 1975 are
used; the experiments are aimed to define the effects on the harvest of the amount of seed
planted and the quantity of nitrogen fertilizers used with an optimal water supply. The
meteorological data are obtained from the meteorological station located within a distance
of one kilometer from the experimental fields.

(1) Models based on the duration of phenophases. To determine critical phases of devel-
opment in winter wheat and dominating meteorological factors, the models are constructed
by taking into account the dynamics of separate meteorological factors in the main phases
of vegetation.

Keeping in view the limited quantity of data points, including those obtained under
conditions of good wintering, the models for phenophases are synthesized. Linear models
which characterize the dependence of the main quantitative characteristics of the harvest
are considered on the duration of development phases in days:

v = 47515 — 1.9615 + 1.294; — 2.8315 — 2.7819, £, = 15.6%,
vz = 75849391 — 25.6t5 — 45.119, £ =9.1%,
ya = 37.5—=0.0761, &3 =4.8%, (6.85)

where y; is the harvest in 100 kg/ hectare; y; is the weight of thousand seeds in grams; and
y3 is the number of seeds in a head.

The selected models serve only for characterizing the tendency toward a decrease in
wheat harvest (y;) with an increase of the length of the milk (%), waxy (#g), and complete
ripeness (7}, at the expense of a decrease in kernel weight (y;). Similarly, it is better to
mention that an increase of harvest (y,) with the milky wax degree of ripeness (#;) occurs at
the expense of an increase in kernel weight (y»). This is because of the positive coefficients
of #7 in the first two models for y; and y,.
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(11) Models based on the number of sunshine hours. The purpose of extending the above
modeling is to find the climatic factors that exert more influence than the duration of the
phenophase on the production. Linear models are synthesized depending on the amount of
sunshine S during the different phases. The optimal models are obtained as below:

vy = 38385 - 031356 — 36557 +0.88S9, £1 = 10.5%,
y2 = 42.8 — 0.31355 — 0.68557 + 1.1148y, =2 =3.2%,
y3 = 1.5155 +0.0565, + 0.4748y, €3 =11.1%. (6.86)

According to the length of the phases and the amount of sunshine from the above models,
one can state that the amount of sunshine is the essential element in the harvest. Sunshine
hours during wheat head formation S5 affect the quantity of kernels in the head y;. It is
also correct 1o state that an increase in S5 means a slight decrease in the weight of the 1000
kernels ys.

(111) Models based on the temperature. Models are constructed for the sum of effective
temperatures for the phases in the winter wheat development. Additional arguments are
included into the models for determining the effect of the early phases of development in
wheat production. The resulting models obtained for y; and y; have the form

6.35Ls + 1.7612 — 0.07T¢ + 0.887%, &) = 14.6%,
2.92:2 — 0.087% +0.445T3, &, = 2.5%, (6.87)

Y1
y2

where 17 and 77 are the average dally air temperature and the sum of effective midday
temperatures during the ith phenophase, correspondingly; Ls is the degree of development
of leafy surface during the phase of head formation (for the April 9th).

These models take the second place to the models depending on the duration of sunshine
hours. Here also the strong dependence of productivity on the conditions of head formation
1s evident.

(iv) Models based on the water evaporation. The evaporation capacity of the atmosphere
1s an important indicator of the conditions of an agricultural production. One can use
various meteorological indicators such as the relative and absolute humidity of the air, its
temperature, atmospheric pressure, air dryness, evaporation from the water surface, and
various combinations of these and other indicators in constructing the models (also unified
into one model with the variable coefficients using the inductive learning algorithms) for
climate zones with appropriate adaptation for each irrigated field.

Here the variables concerning the total and midday evaporation from the water sur-
face of the standard evaporation tank are used in models for each phase of winter wheat
development. The following models are obtained:

v = 12.3Es — 8.71E; — 8.83Ey, =, = 10.1%,
Y = 113.5 — 0464E5 — 309E5 — [O.3E9, Ea = 2.[%,
V3 3.54Es — 0.368E9, 1 =9.3%. (6.88)

According to the structures of these models, these are analogous to the models that represent
the dependence of the harvest using the number of sunshine hours. These models also trace
the relationship with E£s during the head formation. One can draw the conclusion that the
number of kernels is established during the period of head formation, and that an increase
in evaporation causes an increase in the number of kernels and better harvest.
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Models with respect to the end of the head formation phase.

From the above modeling results, it is clear that climatic factors affect the wheat harvest
and its characteristics mainly prior to the stage of head formation. This makes it possible to
build up a good prediction model for the wheat harvests for the end of the head formation
phase using the amount of evaporation from the water sutrface (£5), the number of sunshine
hours (S5), the duration of the phenophase (#s5), and the relative air humidity (es).

The linear models obtained are as foliows:

y1 = 5.9185 — 2.06t5 + 11.13e5 — 3.65E5, &) = 10.1%,
Y2 = —0.5655 + 0.12¢5 + 16.198‘5, Exr = 2.6%,
y3 = 05115+ 6.2665, £3=5.1%. (6.89)

The models can be used for the evaluation of agricultiral-climatic resources of a specific
irrigation system for determining the possibilities of raising a particular crop for which the
model is identified. In this case, the observed data can be averaged to the available series
of years. The same models can be used for predicting the future harvest with known factors
of crop development for the end of the head formation phase or earlier—for example, after
wintering with a favorable prediction of the sunshine, evaporation of water surface, and
length of the head formation phase.

It is necessary to supplement with certain appropriate biological indicators for a more
objective prediction of wheat harvest after the beginning of spring growth. The variables
such as the degree of development of the leafy surface L and the quantity of dry matter V
at the beginning and end of the head formation are used in constructing the second-order
polynomial models; the optimal models have the form

yi = 17.6Ls +0.39V, — 1.29L% £ = 6.7%,
yo = 77.5+0.006V3 + 3.19Ly — S.85L4Vy, &2 =4.7%,
y3 = 37.6 — 0.00066V3 + 0.0065L3, &3 = 4.7%; (6.90)

v = 40.55 — 0.0023Vs +0.086VsLs — 0.325L3, £ = 13.6%,
yo = 43.17 = 0.06Vs + 1.12Ls, &3 = 6.7%,
y3 = 37.69 — 0.00003V? + 0.0014VsLs, e3 = 4.9%. (6.91)

The latter which is a more precise model of the harvest specifies the dependence of wheat
production on the degree of development of the leafy surface at the end of the stalk formation
phase. The dependence of the production on the quantity of dry matter and the amount of
leaf surface at the end of the head phase decreases because of biological changes occurring
in the head stage.

This means that it is sufficient to indicate the amount of leaf surface and the amount of
dry matter at the end of the the stalk formation phase for building up the prediction models.
The linear models that consider the climatic factors during the head stage have the form

yy = —77.5+2.89L, +3.07S5 — 0.032t5 — 0.13%5 + 17.19E5, ; = 6.8%,
vy = 0.048V — 0.503S5 + 0.079Ls + 16.05E5, &3 = 2.5%,
vy = 32.94 — 0.061V, +0.563¢5, €3 =5.1%. (6.92)

The inclusion of the variables of biological indicators of development at the end of stalk
formation permit a higher degree of accuracy in the models. The variable corresponding to
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the amount of dry matter is discarded by the computer in the model of wheat harvest (y;)
and the variable corresponding to the surface of green foliage is left in the model.

The above selected models can be used effectively for predicting the wheat harvest
since the measurement of foliage area can be carried out with high precision by indirect
methods—for example, with the aid of aerial photography.

The studies on agricultural productions with irrigation are related to a large number of
meteorological and agro-technical factors. The majority of the factors are cross-correlated
and the construction of one universal model for studying various aspects of agricultural
preduction is inadequate. This study indicates that as a result of directed selection of partiai
models constructed for a large group of arguments, it is possible to get models of production
corresponding to certain practical considerations.

Example 9. Adaptation of yield models to crop regionalization,

The principal sources of model error in the above example are the limited usage of the
variables. Here is a trial to further extend modeling of the yield of agricultural crops in
adapting to regionalization. The organization of the modeling process objectively takes into
account the expansion of input variables. The modeling errors depend on the noise in the
experimental data, assumptions made in the design of the complete model (i.e., the maximum
complexity of the model and correspondence to the physical process), the method used to
divide the experimental data into sets, the choice of control intervals (averaging periods of
input variables), the criterion of model selection, etc.

A particular feature of crop rotation-structure planning to solve the different groups of
problems in adapting yield models to crop regionalization is addressed in the work of
Khomovnenko [75] with the exclusive use of predicted input variables. The intermediate
yield models are developed with the use of calender (monthly, seasonal, or average of
several months) values of climatic factors.

For example, considering the modeling of wheat harvest as y = f(H, C), 20 more variables
which characterize the climatic conditions are supplemented to the original list of variables
H and C; average daily temperatures t; ;, precipitation R;_;, sunshine hours S;_;, and
lack of air humidity e;;_; are summed over the period from ith to jth month and vused as an
input in the model (when i = j, only one subscript is used).

The meteorological data used in modeling is collected during 1945 to 1974 by one of
the agricultural weather stations that is located about 100 km away from the experimental
farm fields. This a situation in which time and spatial extrapolation of input variables could
be used.

The data is divided into four sets: training (A), testing (B), and two examin sets
(C1,C2, and C = C, U (). The second examin set is produced from the sequence of
meteorological data, measured in the region for which the yield model is to be used. The
regularity criterion A(A U B) is the squared error measured on the training and test sets,
A*AUB) = ZieAUB(y — j’);?' < 0.02; A(C)) is the squared error measured on the first
examin set, and A{C,) is the squared error measured on the second examin set. The model
accuracy 1s improved further by an appropriate choice of averaging intervals of the input
variables—for example, by making these intervals equal to the development phases of the
crop, and the model adaptive with respect to the climatic conditions of the irrigation sys-
tem. To adapt the model, the step-by-step correction of equations is used by excluding
the extremum test data points. The algorithm with orthogonalized complete description (a
generalized algorithm) is used [112] (also refer to Chapter 2).

In the first case, the criteria used in estimating the potential effectiveness are the aver-
age annual yield (¥) and the mean square deviation A(A U B). A complete sifting of all
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intermediate models yields the model

y = 53.41 — 0.000203¢s, 155, — 4588.8 +0.048R5_s), (6.93)

H 6(3,5)

which is the optimal yield model for winter wheat; the average annual yicld computed from
this model is y = 23.25 100- kg./hectare and the error A(C) = 0.004. In computing the
criterion error, the variable y 1s replaced by ¥.

Similarly, in the second case the yield models used for annual planning of water dis-
tribution have different lists of input variables that characterize watering and fertilization
schedules and climatic factors. The models obtained are as:

S 105, 165 S
» = 69.1 - 0.0000023°F 45511 0002300~ o5

o) fia) Py, iy

1 1
= 30.9 +0.0000079R 122 N Sy 1%, — 57.7 - — 0.94 :
¥2 (12-2) ) s NS Rz
L

3 = 31.91 +0.007N Segy +0.33N R_sy — 0.022 o + 1.72 (6.94)

NzR(y,f_s) NZ S(3)‘

The models for v, and y3 are obtained as optimal and acceptable solutions, but the inter-
mediate models for y; do not yield any acceptable solutions due to the limited nature of
the experimental series. However, in order to illustrate the potential effectiveness of the
above selected models for yy, y2, and y3, which characterize different irrtgation schedules,
the yields are simulated for a period of 30 years (1945 to 1974).

The results of the investigation of the models prove to be physically sound and agree
with the experimental results conducted by various scientists. A further increase in accuracy
can be achieved by optimizing the average intervals of the input vanables.

6 MODELING OF SOLAR ACTIVITY
Model as a sum of trend and remainder

The random processes being modeled can be represented as the sum of trend and a remainder.

¥y = Q) +4(), (6.95)

where Q(1) = ﬁ EL"{ v(#) is the moving average about the center of the averaging interval
and g(r) is the remainder (called “anamoly” in meteorology). Both are modeled using one
of the iductive learning algorithms. The process averaging interval 7, gradually increases
until the sum of the prediction errors of the trend and of the remainder decreases. The
global minimum of the sum is the optimal value of 7,,.

Additive-multiplicative trend

Alternatively, more complex is the additive-multiplicative trend of the form

y(1) = Q1) + O20)q1 (1) + Q3(Dg3 (D), (6.96)

where 1, @2, and Q3 are polynomials in time with the dimensions of the moments of
a random function—the mathematical expectation, the variance, and the third moment,
respectively. Such trends are first of its kind in the literature to be used.
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The limiting admissible prediction time with respect to a trend is estimated on the basis
of the averaging interval; 7, < T,,, where T, is the averaging interval of trend. Usually
this interval is sufliciently large. For autoregression single factor models of the form ¢, =
fAgi—1,q,—2,---) the limiting admissible prediction time of the remainder in the case of a
single-level prediction does not exceed the correlation interval 7,,,, < Ty, where T, is the
averaging interval used in the remainder part.

To determine the limiting admissible prediction time for multifactor models of the form
G =fG@r1,Gi—2, -t 11, - - -), 1t is necesssary to choose according to the larger of the
autocorrelation and cross-correlation intervals.

Multistep prediction as a transient process

Long-range multistep prediction has many features of transient process. In the prediction
region of a random process, the predicting model shifts from a steady state regime of
continuous step-by-step renewal of information (regime of observation) into another steady-
state regime for which no new information of the object is being fed in (regime of prediction).
As in the theory of tracking systems of servomechanisms, the predicting model can be
represented as the sum of two components—the trend and remainder.

In the interpolation interval, the prediction differs only slightly from the actual data since
it is based on the minimization of the mean-square error of the residuals. In turn, in the
prediction interval, it is convenient to represent the remainder in the form as a series

q(1) = qi(N) + g2(1) + g3(1) + ga(1), (6.97)

where ¢,(7) 1s the exponential component of the remainder, ¢2(¢) is the attenuating transient
error, g3(7) 1s the nonattenuating component of the remainder, and ¢4(f) is the constant
component,

After singling out the trend Q(r) from the actual data, it is expected that harmonic
components exist in the remainder with the same frequencics as in the trend because only
nonattenuating oscitlations of given frequencies are singled out in the trend. The presence
of nonattenuating component gs(f) in the remainder is the result of imperfection of the
algorithm for singling out the harmonic trend; in an ideal case ¢3(r) = 0. In long-range
predictions, there is a small steady state angular tracking error (# = const ) by which the
prediction ditfers from the trend. As in the servosystems, this can be determined without
integrating the differential equations of the model, but by substituting the steady state forcing
function such as Q(r) = sinwrt and the response, y(1) = A sin(8+wt) for determining the angle
0.

The analysis of steady-state regime is simple in a single-frequency trend and complicated
n several frequencies. In particular, one needs to solve nonlinear equations to determine
the tracking error without integrating the equations. But it is simpler to first integrate the
equations of the predicting model and, thus, find the tracking error and all other components
of the prediction. Once the angular tracking error is determined, then it is easier to determine
the quality factor of the predicting model as a ratio of the angular frequency of the trend to
the tracking crror.

Correlation interval of the transient component

Correlation function of a typical non-steady-state process can be represented as a sum of
steady-state and transient components:

y(t) = y.ﬁ‘.'»‘(t) +ytr(t)7 (6.98)

58



where

Vss(t) = QO + g3() + qa(r) and y, (1} = g1 (1) + g2(8).

The corresponding autocorrelation functions can be found for the three terms in the above
equation as

Ap(T) = Ay(T) + Ay(7). (6.99)

The basic part of the steady-state component is the trend and the remainder is the transient
component,

If we construct a correlation function of steady-state process, we will notice that the
prediction time of a steady-state process does not exceed the length of its corrclation interval;
T, < 7., where 7. is the coherence time (refer chapter 2).

The time interval throughout which the correlation function exceeds the value of the delta
function, 6 = 0.05. The value of A,, = 0.05 is taken from the experiments of “tossing a coin.”
The correlation interval for a purely random process is given as less than unity—r7, < I;
this means that the prediction is impossible from observations. From these experiments, we
can conclude that the steady-state component can achieve infinite prediction time and the
transient component can achieve the prediction time of less than or equal to unity with the
help of the best inductive learning algorithms.

An example of modeling solar activity

The basic steps in the algorithm for predicting oscillatory processes are listed as follows:

spectral analysis of the process,
singling out the harmonic trend and the remainder,
calculating the steady-state and transient components,

sl

obtaining the optimal difference equation of the transient component using an induc-
tive learning algorithm,
predicting the process as the sum of the steady-state and transient components, and

o v

. determining the accuracy of the prediction in case of prediction time equal to the
correlation interval of transient and evaluating the results.

Here the problem of predicting solar activity characterized by Wolf numbers is considered.
The data are taken for the years 1700 to 1978,

1. Spectral analysis of the process. The spectral analysis on the series of data reveals that
it contains a sharp harmonic component with period Ty = 11.2 years, multiple har-
monics with periods 7', = (1/2)(11.2), T = (1/3)(11.2), T3 = (1/4)(11.2), and T, =
(1/5)(11.2) years, and also low frequency harmonics with periods T_; = 2(11.2), T_, =
3(11.2), T_3 =4(11.2), and T_4 = 5(11.2) years.

2. Singling out harmonic trend and the remainder. The optimal harmonic trend is obtained
by gradually increasing harmenic components until it leads to the lowering of the
approximation error on the remainder. In this example, the trend obtained using
all initial data has only a single harmonic with period Ty = 11.2 years (frequency
wp = 27 /Ty = 0.56 radians/ year).

2 2
4254008 1t (6.100)

£) = 49.9 — 8.3 si
W TR 12
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Figure 6.14. Processes being investigated. (1) the actual data of Wolf numbers, (2) the harmonic

trend Q(1), (3) the prediction with the trend and the estimated remainder Q(f) +g(r), and (4) the output
of the difference equation obtained with the inductive learning algorithm for the remainder data

It 1s aimed at preserving the possibility of checking the accuracy of long-range pre-
diction over the course of 40 years with the starting year of 1943; i.e., where ¢ = 0.

The residual data, which yields the remainder is calculated as the difference be-
tween the actual data and the trend. Figure 6.14 illustrates the trend (}(¢) and the
remainder ¢{¢). As it is expected, the remainder is of an attenuating nature. The same
frequency wp = 2x/11.2 radians/ year is found as it is used in the trend.

3. Obtaining a difference model of the remainder. Here combinatorial algorithm is used
to obtain the optimal difference equation; the complete polynomial has 15 lagging
arguments and the model is chosen in the plane of two criteria 77, — (V) with the
constraint of i*> < 1.0. The following model is obtained:

g(r) = 0.153g,_3 — 0.144q,_s + 0.526q,_1; — 0.225g,_1s. (6.101)

Figure 6.14 exhibits the approximation of the remainder by step-by-step integration
of this equation.
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4. Singling out the nonattenuating harmonic part of the remainder. 1t is proceeded by the
singling out of the harmonic trend and obtained the following harmonic trend, as in
step 2,

27

“.2:‘, (6.102)

2
g3(1) = 1.184sin Tﬂ2t+5.046003
the amplitude of which is A; = /(1.184% + 5.046%) = 5.183. A, and A, are the
amplitudes of the harmonic part of the trend and the remainder, correspondingly.
This enables us to find the angular tracking error # = 0.061 radians. The quality

factor of the predicting model is computed as G = w/0 = 0.56/0.061 = 9 year™!.

5. Determining the constant component of the remainder. This is estimated as q4(r) = 2.329
= const by using the least squares technique.

6. Predicting the solar activity. The equations are obtained for the trend Q(r) and the
remainder g(f) as well as for all four of its components g, (), ¢2(1), g3(7), and ga(1).
The ditference equation for the remainder gives the step-by-step predictions for it.
The sum of the trend and the remainder gives the single-level prediction of solar
activity without improving the prediction result.
In short-range predictions with the prediction interval of T, = 11 ycars, the ac-
curacy of prediction is 0.64 (without adaptation of the degree of stability) and in
long-range predictions with T, = 33 years, it is 1.54.

Correlation function of the transient component of the remainder

The transient component of the remainder is defined as y,, = g(f)+ g2() and its correlation
function 1s calculated from

N—T1
ATy = Y Gigur, T=1,2,---,N. (6.103)

=1

All values of A,.(+) are normalized with respect to the maximum value and construct the
correlational graph. The coherence time obtained is nine years, confirming the prediction
interval on which it is possible to increase the accuracy considerably by optimal choice of
the degree of the predicting model.

Further analysis on the problem is based on the theory of servosystems with the analysis
of the dynamic equations of a tracking system [52], and we leave it to the reader. However,
in long-range predictions it makes no sense to increase the time of transient process of the
remainder beyond the correlation interval which is approximately three time constants of
7., according to the concepts of the information theory.

Two-level algorithm

Alternatively, the modeling of solar activity is conducted through the two-level aigorithm of
multilevel objective analysis using the balance criterion. The above examined optimization
(structure and estimates of the predicting models) is performed for both levels as seasonal
and annual predictions. With regard to the compatibility of the predictions, the balance cri-
terion makes it possible to raise the prediction time of seasonal predictions to the prediction
time of annual predictions.
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