Chapter 3
Noise Immunity and Convergence

According to the principle of self-organization, the depth of the minimum of the princi-
pal selection criterion (i.e., regularity, minimum bias, balance of variables) is taken as an
indicator of the successful synthesis of a model. Suppose we have m input variables of
x and an output variable y with N observations. In the combinatorial inductive setup, we
make all possible partial structures from the reference function y = f(x). The choice of the
optimal model depends on the given external criterion and on the given partition of data
sets. An unbiased equation can be obtained with the help of the minimum bias criterion
Tps as the principal selection criterion. The same result can also be obtained, for low noisy
data, using the regularity criterion A(B). The deeper the minimum of the unbiasedness
(0 < mps < 0.05) or regularity, the more reliable the prediction of the changing character of
the process. Nevertheless, biased equations can be useful for approximating a process in the
interpolation interval. If the global minimum is not achieved according to our expectations,
it signifies that the problem is not solved. Then it is necessary to take measures like (i)
reformulating the problem, (ii) changing the list of feasible variables, (iii) introducing new
reference functions, (iv) increasing the freedom of choice for further evaluation, and so on.

Noisy data is characterized by its noise level o as a measure of noise-to-signal ratio.
Noise intensity in the data plays an important role in obtaining the deep minimum. If a
sufficiently deep minimum of the principal selection criterion is reached, it is possible to
assume that the problem is solved. The results of potential noise stability indicate the exact
limit of satisfactory modeling from the noisy data using an inductive algorithm that can be
attained by using actual external selection criteria or multicriterion analysis. The degree of
noise stability of the selection criterion can be determined by gradually increasing the noise
level of data and finding its critical value «®, above which the criterion fails. Before going
into experimental studies, we give an analogy with the well-established information theory.

1 ANALOGY WITH INFORMATION THEORY

The concept of a signal and its noise stability are well studied and established in the field
of information theory [111]. The importance of the studies in information theory exerts a
favorable influence on other branches of science and technology—in particular, with the
self-organization theory. The information theory assumes that input signal is frequency-
band limited and that an additive noise is superimposed on it (even if the noise level is
very high). According to the self-organization theory, usually only a small sample of data
represents the system. It takes into account the fact that additive noise is superimposed
on the output variable. Comparison of the properties of different systems in modulating a

75




76 NOISE IMMUNITY AND CONVERGENCE

Noise £()
g2(i) = (1) + £
410 G =g1+§ Communi-
Communi- q1 Signal cation
. cation Signal Communi-  |received received
Information T [Tr i cation T Receiver T Destination
a source i channel | '
L ] T A 1 [} T
[ 1 1 Noise £(1) 1 1 i
| 1 i e e b !
1 | i 1 1 )
1 | : 1 2= gk &
Choice of ¢ =10 .1 T a1 T Hi*E ' Tdentification
b polyno- (sl Poly- ! - - Adder - - Computer : #ee:%xgi“le()‘?,l:‘.
mial nomial - - ' critenion)
¥ T
] ]
} 1
Noise £/ [ !
oise £(7) : : .
1 1 1
1 } I
i ] I
1 I t
! 92(0) = qi(n +E)

]a+€ Computer User of
: - the model

Monitoring
Ohject Stations

Figure 3.1. Schematic diagram of (a) a communication system, (b) a computational experimental
setup, and (c) a self-organization modeling system

signal, which include Shannon’s coding theory, constitutes an important part of information
theory.

We give an analogy between the basic concepts of information theory and self-organization
theory in identifying the processes. The main purpose of this analogy is to show the possibil-
ity of the exchange of basic ideas between these theories. We restrict our assumptions such
that we are dealing only with simple amplitude modulation used in the communications and
with the simplest polynomial (linear in weights) models of the form ¢ = ap+a;x;+- - -+auX,,
where ¢ is the dependent variable and x is the relabeled independent argument of nonlinear
nature (for example, g = 10 — 0.1¢%).

In systems modeling, one usually considers the identification of a model only, and not
the self-organization of predicting models, although communication theory does include a
prediction method that is used for decreasing the redundancy of a signal. This does not
restrict our study of drawing meaningful analogues between communication systems and
self-organization modeling systems.

Let us put our analogy in the form of block diagrams as shown in Figure 3.1, where
(a) is a communication system, (b) is a computational experimental setup, and (c) is a self-
organization modeling system for obtaining an objective model (omitting the functions of
specific elements).

In the communication system the information source chooses the particular form of
communication from a set of possible communications. In the computational experimental
scheme, we choose a polynomial (for example, ¢ = ap + ajx = 10 — 0.17%). In the self-
organization system, the information source is the object of investigation (for example,
ecological system) that “transmits communication” within a period of time.

In the communication system, the transmitter maps the space of communications into
the space of non-noisy signals as ¢,(f) — ¢;. In the computational experimental scheme,
the polynomial g;(¢) is represented in a data table with the columns of ¢ and g;. In the
self-organizing system, the actual data is hidden in the system itself.

The communication channel in the communication system is the link at which noise
intrudes. At its output, we obtain a copy of the signal; namely, the table of noisy data
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with 1 and g, = g1 + £&. The noisy signal is received by the receiver and is mapped into
the space of received communications g; — ¢2(7). In all the systems, the data table with ¢
and ¢, is transformed into a polynomial for g2(r), called the physical model. The receiver
corresponds to the algorithm in self-organization modeling. The destination is the place
where the communication (model) is expected to go.

Information theory studies the signal at the output of the communication channel; self-
organization theory studies the experimental data sample at the output of the object of
investigation. Overall, one can see that the most important parts of the systems from the
communication channel to the destination or user is the same for all three systems.

Analogy between the approaches in information and self-organization theories. Both theo-
ries focus on the quasistatic part of the processes (known as the signal or trend) that consider
noise as a dynamic component. Both of them assume that the data being processed contain
information of true input signal that conceal the governing laws acting on the object. The
objective goals concentrate on a receiving device for restoring as accurately as possible the
original signal (governing laws); here the receiver corresponds to the modeling algorithm
of self-organization modeling.

The information theory assumes that the signal at the input of a communication channel
is frequency-band limited and that an additive noise is superimposed on it. The self-
organization theory also takes into account that additive noise is superimposed on the output.

The communication theory pragmatically defines the “true input signal” ¢;(f) and the
concept of noise £(#); for example, a portion of the output voltage permitting transmission
of communication appears in the signal. Similarly, in systems modeling, the useful part
of the data is the part that is utilized for identification or prediction depending on the
problem; everything else is noise. The noise hinders performance of modeling and lowers
the minimum of criterion for selecting a model.

Information theory assumes that noise is independent of signal and additive with normal
distribution. Self-organization theory asserts that if noise is independent, then the informa-
tion theory is directly applicable; but if noise is dependent on the signal, it is applicable
only to orthogonalized inductive algorithms.

1.1 Basic concepts of information and self-organization theories

Signal transmission time versus interval of data points. In the information theory, the signal
at the input of a communication channel is characterized by the quantities: amplitude g,(t),
power Pi(¢) = qf, frequency band w;, maximum transmitter frequency wyq,, signal-to-noise
ratio as logz(Pl/ﬁz), and volume V|, =w T 1og2(P,/§2).

The signal at the channel output is determined by the quantities: amplitude ¢.(f) =
q1(t) +£(1), power Py = P +£2, frequency band w», signal-to-noise ratio as logz(Pz/éz), and
channel volume V, = w,T; logZ(Pz/éz). The signal duration 7T is analogous to the period of
observations (length of experiment) of the modeling object; i.e., the total time interval of
data observations from first observation to the last one. The divisions of data must be no
wider than 1/(2w)), where w; is the frequency band. Consequently, the signal transmission
time corresponding to the minimum length of the measurements is as follows:
when there is no noise,

when there is noise,

N
T, = - sec; here
2(4)2




78 NOISE IMMUNITY AND CONVERGENCE

T, <T.

Ny and N, are the algebraic minima of points required in self-organization modeling with
and without noises, respectively. For polynomial models, the number of points is equal to
the number of terms in the individual polynomials. For harmonic models, it is three times
the number of harmonic components of the model. Here N specifies the number of terms
in the polynomial. At the same time, it is also the minimum number of data points required
to estimate the coefficients using the least-squares technique.

Transmission capacity versus minimization of external criterion. The transmission capacity
C: of a communication system in the sense of Hartley is logarithmic to the base two of
the number of communications that can be transmitted per unit time with a given accuracy.
The optimal admissibility of a communication system is given in terms of its transmission
capacity (speed of transmission) as

Pl + 2
C, = wylog, &

In time 7, it is possible to transmit J = C,T bits of information through the communication
system. The formula shows that for equal information, that is for J = constant, signal power
Py can be traded off for bandwidth w or for transmission time T, and so on.

In self-organization modeling, the problem is solved in a much more modest way. If we
confine ourselves to stationary models with constant coefficients, we need to transmit only
one communication; i.e., to construct a single model. The optimal system for obtaining a
self-organizing linear model in the absence of noise requires a number of measurements
equal to the algebraic minimum of the N, points.

We can treat the reciprocal of the minimum of the selection criterion as the analogue
of the transmission capacity of the communication system (C; = k/A(B)in), where k is an
arbitrary constant. As noise increases, the minimum depth of the criterion decreases; i.e.,
the transmission capacity drops (Figure 3.2).

) bits/sec. @G

Transmission capacity versus noise stability. The noise stability of a communication system
is determined by the minimum limiting admissible value of the signal-to-noise ratio for
which it is still possible to receive the signal.

In self-organization modeling, one uses two limits. One of the limits is determined by
the confidence level of the the external criterion through a computational experiment and
the other by the polynomial structural changes.

The efficiency E of a communication system is directly proportional to the transmission
capacity C, and the maximum noise stability, and is inversely proportional to the signal
observation time 7.

The efficiency of an inductive learning algorithm is directly proportional to the ratio of
the algebraic minimum number of points necessary for constructing the model to the number
of points in the data table.

N Vi

E = k = k .
N max Vmax

(3.2)

The greater the ratio of the volume of the communication channel to that of the signal, the
greater the noise stability, but the lower the efficiency of use of the given communication
channel (or the efforts made to obtain the experimental data).

The efficiency of communication characterizes the possibility of transmission along chan-
nels with narrow-band with low energy expenditure. The efficiency of modeling character-
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Figure 3.2. Decrease in the discrete values of the optimal complexity of model correspondmg to N2
and increase in the optimal length of the data sample Nmax with mcrease in the noise power £ for a
specified model complexity as at the point (3,0) as ¢ = 10 — 0. 17

izes the possibility of constructing a sufficiently accurate model from a small number of
points with a small expenditure of time on measurement, collection, and processing of data.

This can be applied directly to one-dimensional modeling problems, though two dimen-
sional models require the introduction of two frequency bands as in two dimensional cases
of communications [35].

1.2 Shannon’s second theorem

The theorem is formulated as follows: Let P denote the signal power—supposing that the
noise is independent—and white is the variance of £2 in a frequency band w. The optimal
transmission speed attained is

P+ 2 W
Cimax = w2 lng(—Ef_> =W 1082<w—1““>- 33

The greater the signal power in comparison with the noise variance, the greater will be the
attainable transmission capacity. Thus, the theorem establishes a bound for the transmission
capacity of the communication system that is attainable for optimal choice of the coding
method and channel band w; (the signal band w) is assumed to be given) (Figure 3.3).

In self-organization modeling, the theorem enables us to choose the model with optimal
complexity N, (complexity of the modeling object Ny is given). The greater the noise, the
lesser the depth of the minimum of the selection criterion, and the simpler the model (Figure
3.2). The theorem indicates the optimal (limiting attainable) values of the signal band (and
the complexity of the models), and thus makes it clear why it is necessary, in the presence
of noise, to use nonphysical models. The physical models correspond to the point (3,0)
indicated in Figures 3.2 and 3.3.
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Shannon’s geometrical construction of the theorem

Shannon’s geometrical construction is an interpretation of Shannon’s second theorem (noisy
coding theorem) about the limiting transmission capacity of a communication system. The
input signal (like the table of input data in modeling) is at all times filled with new points
with a discrete interval step of A < ZL_, With the appearance of each new point, the
dimension of the hyperspace increases by one. However, the mean value of the signal is
stable. This is represented by a hypersphere with unit radius , and with a center at zero.
The noise is equal to the variance of the deviations of the signal from its average value. It

is represented by a hypersphere with radius &, corresponding to noise and with the center
at point A on the outer hypersphere with radius r (=1 + 6,%,|) and with the center at zero.

In the absence of noise, the number of models is infinite as they lie on the inner hyper-
sphere of unit radius. With reference to the Figures 3.2 and 3.3, all of them correspond to
the point (3,0) and are often combined into a single “physical model.”

In the presence of noises, the number of models, called nonphysical, is finite and lies
on the outer hypersphere of radius r», which satisfies the relationships of Shannon’s limit
theorem. In Figures 3.2 and 3.3 they correspond to the points (1,1) and (2,0.75).

o for Figure 3.2: Ny=P+£%, N, =P, Ny — N, =2
e for Figure 3.3: w; = P+&% wy = P; w) —wy = &2

so that

Nz P [255] P
AR wa o O 34
N pPee2 O o T Pre 34

If the noise power £2 is given and the physical model corresponding to N is known, then
the theorem enables us to find a model of optimal complexity with N, deductively; i.e.,
without sorting the partial models. The theorems applies only to self-organization modeling
on the basis of external criteria characterizing its accuracy (regularity, prediction, etc.).
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Criterion of convolution stability

The basic purpose of geometric construction of the theorem is to find the area or chord
lengths of the surface in the hypersphere (corresponding to noise) intersecting the inner
hypershere of unit radius. Specifically, this is formulated as

Pg?
h=\epra (3.5)

where 7 is the signal duration, w is the frequency band, P is the signal power, and £ is the
noise variance.

This enables us to find a criterion for stability of convolution of chords that is convenient
for self-organization modeling and that can be used for solving various problems such as
pattern recognition and long-range predictions.

For example, in selecting the best predicting model, this is represented from analytical
formulas of form:

=, (3.6)

where o,y and o; are the variances of the prediction models and the variable features cor-
respondingly, and are calculated by averaging deviations. ¢ is the prediction model numbers
and i, the variable numbers i =1,2,---,m.

h; is computed as the mean chord length (convolution)

1
h, = \/;(h,21+h,22+---+h,2m). 3.7

For example, if there are ten prediction models, h, is computed for each model. It is
chosen so that the model for the convolution of the chords is least. If kg < by, t=1,9,
then the optimal model according to the criterion of stability of chord length of Shannon’s
construction is the tenth.

Similar formulations are used to solve problems of pattern recognition and vector opti-
mization. This criterion is also called Shannon’s displacement criterion.

1.3 Law of conservation of redundancy

The properties of a communication system are determined by the value of its redundance.
The properties are different for wide-band and narrow-band communication systems. In
wide-band systems, the redundancy exceeds zero and the channel volume exceeds the sig-
nal volume V,,, > V| or Wy > wi. In wide-band systems for self-organizing models,
the candidate models {from the very simplest models to the models whose complexity con-
siderably exceeds the complexity of the actual or physical model) arc put up for sorting
according to a set of criteria. Algebraic models can serve as the analogue of a wide-band
communication system in modeling. For them, increase or decrease of data points (with
subsequent operations with the data table) is useless.

In narrow-band communication systems, the channel volume is less than the signal vol-
ume, and there is no redundancy; V. < Vi 0f wpey < wi. The optimal relationships of
Shannon’s limit theorem (shown in Figures 3.2 and 3.3) are violated. In this case reduction
of the signal proves feasible.

In narrow-band self-organization systems, we choose models whose complexity is no
greater than the complexity of the actual model N, < N,. Finite-difference models of
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complexity lower than the optimal model can serve as an example of a narrow-band link.
Difference models are the analogues of differential equations only for small steps in the
data sample.

Here the sequence of the following operations (using seasonal and annual values of
a system)—collecting average seasonal data points of the variables, expanding the data
table with the average annual values, self-organization modeling for obtaining a model
with optimal complexity, detailed identification (seasonal data), and smoothed identification
(annual data)—can be extremely efficient. Without expanding the data table, the model
with optimal complexity cannot be attained because of the insufficient number of points of
initial data.

1.4 Model complexity versus transmission band

In self-organization modeling, one often uses the term “complexity of a model.” The
complexity of the models is gradually increased until the minimum of the selection criterion
is found. In linear polynomials, the complexity of the model is determined by the number
of terms on the right-hand side of the equations.

The complexity of models obtained from the inductive algorithms varies from zero to
Npax and passes through the value N, sought. In connection with this, in self-organization
modeling, it is convenient to look at the quantities Ny = 2w, T, (the algebraic minimum of
points necessary for obtaining the true physical model), N; = 2w, 7, (the algebraic minimum
of points necessary for obtaining the optimal model using the inductive learning algorithm),
and Npar = 2WmaxTmax (the algebraic minimum of points necessary for the most complex
model that can be obtained as a result of self-organization, or the number of data points
actually represented in the data table).

The following laws (Figure 3.2) come into effect in self-organization modeling:

1. In the absence of noise, beginning with some complexity equal to the complexity of
the actual model Ny, further increase in complexity is not required; for fz(t) =0, we
have N> = N} and Ny > N

2. In the presence of noise, the model with optimal complexity appears earlier. The
algebraic minimum of points (the complexity of the optimal model) decreases; for

£2 > 0, we have Ny < N and Nyax > No.

The analogous laws are known in information theory (Figure 3.3). Since the bandwidths
w; and wy can only be approximated, every communication channel gives distortion, just
as every data sample, even when V, = Vi:

1. For exact transmission of a communication, it is necessary for the channel volume to
be at least equal to the signal volume; for .52(1‘) =0, we have V; = V; and V,,, > V.

2. When there are noises, the optimal channel volume is somewhat less than the signal
volume; for £2 > 0, we have V; < V| and V,,, > Va.

This means that the transmission band of special receivers designed for operation under
noise conditions is narrower than wide-band receivers intended for the case of small noise.
Thus, the communication channel band is analogous to the model complexity estimated
according to the algebraic minimum of points

N
Vi = w7y log, (P, /€%) = 71 log,(P1/€%),
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N,
V2 = wals log,(P2/€2) = 7210g2(P2/§2). (3.8)

The influence of noise on the model accuracy can be overcome to some extent by increasing
the number of measurements. However, when the number of data points becomes excessive,
the accuracy and noise stability of the model decrease. Thus, there exists an optimal
number of data points for stationary and non-stationary signals. Because of the necessity
of decreasing the influence of noise, one chooses the table length about 10 times as great
as the algebraic minimum of the points 7 = 10.7; (Figure 3.3). During this interval, the

system will collect J = C;T; = w. logz(%i).TE bits of information.

An analogy between the optimal complexity of models for the inductive algorithm and
the transmission band for a communication system is shown in Figures 3.2 and 3.3, where
N is the complexity of the physical model, N, is the complexity of the non-physical model
of optimal complexity, Nmqy is the optimal range of complexity of model candidates, w; is
the band of the true signal, w, is the optimal band of the receiver, and wy,,, is the optimal
volume of the transmitter signal.

The law of compromization. The important result of investigations arrived at through the
information theory is the establishment of a connection between transmission capacity and
noise stability. Increase in noise stability decreases transmission capacity. Here one varies
the parameters of the communication system; for example, by varying the frequency band
wsy.

An analogous law holds for self-organization modeling using the selection criterion such
as regularity; an increase in the power (amplitude) of the noise leads to the choice of simpler
noise-stable models for which the algebraic minimum of points is less than that of the model
of the object obtained under conditions of absence of noise. Here one varies the parameters
of the model; for example, by varying the algebraic minimum of points N,.

Here we conclude that the noisy coding theorem (Shannon’s second theorem) plays a
central role in this analogy between information theory and self-organization theory. In fact,
the theorem states that it is possible to transmit information through the channel with as
small a probability of error as desired if it is transmitted at any rate less than the channel
capacity. In other words, it guarantees the existence of a code that may be transmitted at
any rate close to but less than that of channel capacity and still be received and decoded
with arbitrarily small probability of error, It proves that channel capacity is a fundamental
property of a communication channel. This is conceptualized analogously to the theory
of seif-organization modeling. In particular, it shows that, in the presence of noise, non-
physical models obtained by self-organization modeling are optimal.

2 CLASSIFICATION AND ANALYSIS OF CRITERIA

Let us assume that the initial data is given in the form of the matrices

R _}E‘_ YN x 1]
_ _ X [N x m]
y= _)_B_ ? X = _X_B_ ’ NA +NB+NC =N (39)
Ny+Ng =N
ye Xc A+ Np w

The entire data sample is partitioned into three disjoint subsets A, B, and C. The set W
is the union of A and B. The optimal dependence relation between output y and input
variables X is sought by the inductive learning that are linear in the coefficients of y = Xa.
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It is assumed that the submatrices X4 and Xp, which are used in the selection process to
any particular model of complexity s(< n), are of complete rank.

The external criteria used in the inductive algorithms can be expressed in terms of the esti-
mates of the output variables of the models and their coefficients obtained on A, B, W, and C.
Here the basic quadrature, and combined and correlational criteria are described.

All the external criteria that have the quadratic form can be grouped into two basic groups:
(i) accuracy criteria, which express the error in the model being tested on various parts of
the model and (ii) matching (consistent) criteria, which are a measure of the consistency
of the estimates obtained on different sets. There are symmetric and nonsymmetric forms
of the criteria in both the groups, where symmetric means one in which the information in
sets A and B is used equally; otherwise, it is nonsymmetric.

2.1 Accuracy criteria
Regularity criterion (nonsymmetric)
This is the typical quadratic criterion and historically the first one.
A*(B) = A*(B|A) = |lys — 9501* = 08 — X5aa) (vs — Xnaa)
= |lys — Xsaall?, (3.10)

where a4 = (X1X4)7'XZya, and 34 = Xpa4.
We can obtain another nonsymmetric regularity criterion by replacing A by B and, vice
versa, A%(A) = A%(A/B).

Regularity criterion (symmetric)
This can be built up using the both the nonsymmetric versions of the regularity criterion.
d* = d*(A, B|B,A) = A*(B|A) + A*(A|B)
= |lvs — Xpéiall® + |[va — Xadis’, (3.1

where sets A and B are used equally. It smooths out the influence of the noise that acts on
both parts of the data sample.

Stability criterion (nonsymmetric)

If we require an optimal model, which must be sufficiently accurate on both the sets—
training set A and testing set B for the coefficients estimated on the set A—then this com-
promise can be obtained by the criterion

Iiz = Kz(WlA) ”_)’W — XW&AHZ
AY(AJA) + AX(BJA) = €2(A) + A%(B), (3.12)

where £2(A) is the least squares error or residual sum of squares.
Stability criterion (symmetric)

§? = S2(W|A, B) = &2(W]A) + k*(W|B)

”yw — XW&AHZ + ”yw — Xwagllz. (313)

It
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It is expedient to use this criterion if the finiteness of the data is considered. The sensitivity
to the separation of data is lowered and the influence of noise is averaged (a kind of filtering
takes place). In other words, this has higher noise immunity.

Averaged regularity criterion [122]

According to this criterion the mean value is calculated on Ny for each particular model
being tested under the condition that each point in the set W is, in its turn, the testing sample
and the remaining Nw — 1 points constitute the training sample.

1 R/
AnW) = 2=l =5 Iew (3.14)

W; . . ..
where $; /= xf&%, x; are the argument measures at the jth point, W; is the training sample

without jth point, and ay; is the estimate of the coefficients on W;. It is expedient to use
this criterion for a small number of points.

Step-by-step prediction criterion
In case of finite-difference equations, it is expedient to use this external integral criterion.
AWy = EWW) = |yw - Syl (3.15)

where the estimate $y is obtained by step-by-step integration of the difference equation
from the given initial conditions. This criterion can also have the forms of i2(A) and 2(B).

The above accuracy criteria, like all other types of criteria, are used in modeling of both
static and dynamic objects.

2.2 Consistent criteria

The criteria in this group do not take into account the error of the model in explicit form,
but measures the consistency of the model on two different data sets.

Criterion of minimum coefficient bias

This reflects the requirement that the coefficient estimates in the optimal model estimated
on sets A and B, differ minimally; i.e. they are in agreement.

n% = n2A, B) = ||as — asl*. (3.16)

Minimum bias criterion
This is the most widely used form of the criterion.
77!33 = ngs(WM»B) = ”)A/V‘V - j}W”2
| Xwés — Xwag]?

(as — ag) Xy Xw(@a — ag), (3.17)

which differs from 7, by the presence of the weight matrix X}, Xy and expresses a different
minimum requirement of consistency on the set W from the estimates of the model outputs
that obtained coefficients from the sets A and B.
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Absolute noise immune criterion

V2= VWA, B,W) = (aw — )" Xy Xw(@s — aw)
= Gw — %) 0% — - (3.18)
This uses the estimates of the model output for the coefficients obtained on three sets—
A,B, and W, It got its name because it satisfies the most important condition of noise
immunity. It rejects excessively complex models under noise conditions [67].

The above minimum bias criteria are symmetric. It is easy to write nonsymmetric forms
of m,, and V2. For example, on the set B [129]

Mes(B) = ||9% — 931I° = | Xsta — Xpais||*, (3.19)
V2(B) = (aw — aa) X5 Xp(ag — aw). (3.20)

One useful way is to clarify the connections among certain external criteria. One can easily
show that 77, (W) = n2.(A) +7;,(B) and, in the same way, V>(W) = V?(A)+ V2(B) because of
the relation X}, Xw = X3 Xa + X5 Xp.

2.3 Combined criteria

In addition to the criteria c1,¢2, and ¢3 introduced in chapter 1, here is another form of
the combined criterion ¢4.

Minimum bias plus symmetric regularity

c4? = 7 +d-. (32D

It is recommended that the sequential use of two-criterion selection is preferred in the
combined criteria. F number of models are selected using the consistent criterion like
n,fs, then the best model is selected using a accuracy criterion like A%(C). Such sequential
application of the criteria increases the efficiency of the modeling, including noise immunity.

2.4 Correlational criteria

These criteria impose definite requirements on the relationship of correlation characteristics
of the output variables of model and the object. Unlike the quadratic criteria, they can be
both positive and negative. This is one of the reasons for separating them as a special group
of criteria. Their applicability for model selection is ensured by the fact that coefficients
of the model are estimated on the set A and the correlation relationship is computed with
respect to the set B.

Correlational regularity criterion

_ ~ =A

_ =Y 53 —3p)
- 8 8 T80
llve — vall- 155 — 95l

where yj is the actual output; 4 is the mode! output, the coefficients of which are estimated

K(B) (3.22)

on set A; yp and 52 are the mean values of the actual and model outputs, respectively. The
best model is based on the condition K(B) — 1.



CLASSIFICATION AND ANALYSIS OF CRITERIA 87

Table 3.1. Classification of external criteria
Criterion form
Type Criterion nonsymmetric | symmetric
Accuracy regularity A(B), Ax(A) d (W)
stability K2(B), K*(A) SH(W)
averaged regularity - AZ (W)
prediction i2(B), i*(A) W)
Consistent minimum bias 7;,,(A), 12 (B) 75(W)
abs. noise immune | V?(A), V3(B) VA(W)
Correlational | regularity K(B),K(A) K(A)+K(B)
NL agreement J{(B), J,(A) J,(A)+ J(B)
Combined bias + regularity 775: + A*(B) "7§s +d°
bias + MSE M +eXA) | nE +eXW)
bias + prediction nz, + A%(C) -

Correlational criterion with nonlinear agreement [129]

This has three different components; one is equivalent to the correlational regularnty, the
other is the agreement criterion for the degree of nonlinearity, and the third is the agreement
criterion for the mean values of the actual and estimated outputs. These components are
based on the mean-squared error as follows:

1
2 - (v=—Ity -3
e =50 o=
(1 =T+ 72+ 22, (3.23)

where y; and 9;, { € N are the actual and estimated outputs of N data points. The quantities
Jo,Js, and J,, are expressed in terms of the centered vectors v=y —¥Jand ¥ = § — y and
the estimates of the variances as z, = \/(v"v/N) and z; = /(3TP/N).

Jo = r(0,v) =9"v/Nz;z, (3.24)
Js = z3/zy — (0, v) (3.25)
In = G =/ (3.26)

It was proposed in [129] that the components J., J;, and J,, of the error vector can be used
as independent selection criteria, calculated on the set B with the estimates a4 obtained on
the set A. The component J.(B) coincides exactly with the criterion K(B). The component
Js(B) is called the agreement criterion for the degree of nonlinearity; this should satisfy the
condition Jo(B) — 0. The component J,,(B) is also called the agreement criterion for the
mean values, but it does not seem to have any independent significance. One can convert
the criterion J.(B) = K(B) into a minimization form |1 — K(B)| — min.

The above mentioned correlational criteria are nonsymmetric; to make them symmetric,
an expression must be added to each in which the sample parts A and B swap roles. Various
groups of criteria are given in Table 3.1.

2.5 Relationships among the criteria

In this section we derive the number of relationships that express the connection among
different external criteria.
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Let us consider the quadratic criteria of symmetric type. We can write the relationship
of 8% in terms of d?.

% = & +HA) + 2B, (3.27)

where £2(A) = A%(A|A) and £*(B) = A%(B|B) are the mean square errors on the sets A and
B, respectively. We can write the minimum bias criterion as

mey = low — $8) — Gw — 712
= |lyw — Wl + lvw — 17
20w — 38 Ow — 99, (3.28)

since XaXW = X;XA +XgXB, X{;/yw = X;y,q +X£y3, aB = (XIT;XB)AIX}gyB, aA = (X;XA)‘lX};yA.
The term from the above expansion can be evaluated further as

Ow — W) 0w — %) = Yava — yaXada + ybys — ypXpasp
= 2(A) + X(B). (3.29)
Knowing this, we can obtain a relationship between S and 7,
§* = mj, + 2 A) + EXB)); (3.30)
between d* and 72,
d* = n}, +eX(A) +£4(B). (3.31)
Now let us consider the criterion V2:
V2 = [ow — 3%) — Ow — 9 Tow — 53 — Ow — $5)]
= (w — S Ow — i) + Ow — ) Ow — )
—Ow = 3w Ow = %) — llow = 3w1*. (3.32)

The term (yw — 94)7 (yw — $%) is given above as e2(A)+e2(B). Since aw = (XhXw) ' Xhyw,
one can obtain the relation as

Ow — ) 0w — 3 = Gw — 99 0w — W)
= [lyw — Swll* =2W) (3.33)

by establishing that Y53, = % $4, and y55% = $%¥ $2. Ultimately, we can obtain the
formula [35]

V24X (A) + £2(B) = EX(W). (3.34)
Using the above examination, one can easily write the relationships

V24§ = &+ eX(W) (3.35)
Vi+ed® = nh + (W), (3.36)

One can show that the absolute noise immune criterion V2 is a quadratic, not a nonnegative

one, by the relation
V2 = (aw — aa) Xj Xw(an — aw)

ATyvTy & o aTvTy A AT Ty » AT Ty
A X3 Xaas +agXpXpap — ywXy Xalw — GywXXalw. (3.37)
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This can be expressed into the sum of two quadratic forms:

V2= s =X 1IP+ 155 — 58112
= (G4 — aw) X3 Xa(@a — aw) + (ap — aw) X5 Xp(ap — aw), (3.38)

so that we can always have V2 > 0.

The relationships established between the criteria §%,42, and V? interconnect all the
symmetric quadratic criteria. In addition to this, the formulas reexpressed for the criteria
5% and d? in terms of the minimum bias and mean-square errors allow one to group these
criteria into the group of the combined criteria. They are, however, fundamentally different
from the combined criteria because of the components included in them and there is no
need for normalization.

Similarly, one can obtain the relationships connecting the nonsymmetric criteria. For
example, the regularity criterion A%(B) can be represented [129] as

AY(B) = £X(B) + n},(B), (3.39)

where 72,(B) is the nonsymmetric form of the minimum bias criterion on the set B.
The connection can be established among the regularity criterion and the correlational
criteria directly from the relationship €2 = (1 — J2 + J? + J2)z? as

A%(B) = (1 — K*(B) + J2(B) + JA(B))22N. (3.40)

The representations of some criteria in terms of other criteria enable us to determine the
characteristics of unique models derived from the original ones. For example, after cal-
culating the squared errors £2(A), €2(B), A%(A), A%2(B), and A%*(C), one can also determine
d*, %, and n?, directly; after estimating £2(W) one can calculate V2,

The reader can find the usage of canonical forms in analyzing the noise immunity of
quadratic criteria in the works [135], [119]. Here the expected value of the criterion is
considered the sum of two components: one takes into account the non-noisy data and
decreases (possibly nonmonotonically) with the increase of complexity of models; the second
reflects the presence of noise that is directly proportional to its variance and increases
monotonically with the increase of complexity of the models. With an increase in the noise
level, the minimum of the external criteria (V? and d*) moves into the region of simpler
structures, which is analogous to the behavior of the ideal external criterion.

3 IMPROVEMENT OF NOISE IMMUNITY

We assume that noise can be additive, multiplicative, or a combination of these two types
and that it does not contain a regular component. When the noise intensity (amplitude) is
very high, the external criterion used might select a model that does not correspond to the
system under study. The criterion is called noise-immune if it selects the true model even
at a significant level of noise immunity. The analytical properties of selection procedures
based on certain selection criteria are given here. Emphasis is made on improving the noise
stability of the criteria in extracting the optimal model with true structure in the presence
of noise. This identifies the true structure by comparing different structures that determine
the maximum allowed noise level.

Let us assume that y is an output variable with a normally distributed noise. Its unit
variance is represented as

y =y +£, E[€]=0, o =E[£T¢] =1, (3.41)
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[s] (o]
where Y is the noise-free output connecting a set of m arguments (input variables) as Y= ¢(z).
Let us assume that we have some noise realization of £ with N values. We obtain a series
of output data for varying intensity of this realization of the noise, yielding N values of the
function

ye =¥ +o. (3.42)

The sample of noise-free data obtained from the function §’= @(z) can be called the signal
and output samples for different variances of £ can be called the signal with noise. Each
sample of noisy data is characterized by a value of the noise-to-signal ratio or by the noise
level as

2

N
a o —o
o? = = o?/ Y 0 =5, (3.43)
j=1

where s° and o? are the signal and noise variance or power, correspondingly; 7° is the
average value of the signal. For a fixed signal the variance and noise level are connected
by a one-to-one relationship 0% = a?.s* or o = a.s.

Suppose the function ¢(z) is a linear (in coefficients) convolution of some number of
functions (for example, a set of polynomial functions fi(z),/2(2), - - - ,fm(2)), equivalent to
the vector of arguments x = f(z). Then for each noise level «, the exact model is restored

by optimizing the structure and estimating the coefficients a of the model.
y=d'fz)=dx (3.44)

for the given sample of input and output values.

Here two types of study results are presented to show the efforts in improving the noise
immunity of various external criteria. The first part consists of the initial studies {129]
conducted on the minimum-bias criterion. This reveals the importance of the extension of
the time interval to the extrapolation region of the data and shows that the largest noise
immunity was possessed by special forms of the criterion with some specified general
properties. The second part is concerned with the finding of noise stability of various
criteria (single- as well as two-criterion analysis) by increasing noise levels for different
data divisions. This gives some comparative results on several most commonly applied
criteria for obtaining single- and two-criterion choices of models.

3.1 Minimum-bias criterion as a special case

The original form of the minimum bias criterion is

Nw GA — $8)2

=3

Toy = O ———F, (3.45)
e Yp

where 7 is the estimated output of the model, the coefficients of which are obtained using

the set A; 3% is the estimated output of the model, the coefficients of which are obtained

using the set B; and y is the actual output.

Geometric interpretation of the minimum bias

Suppose in an N-dimensional space RY (N is the length of the data sample), $.5 is an
orthogonal projection of the vector y' = (y), 2, -, yy) from the output of the linear model
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Figure 3.4. Minimum bias of solutions as a distance between projections of y for different divisions
of data sample

y = xTa, which is estimated by the least squares method onto a linear subspace L(X)
(Figure 3.4), formed by the vectors of m arguments X,.T ={xg,x2, - -,xn), i=1,2,---,m,
ie, a,x € R, and x; € RY; and X[N x m] consists of the sets of matrices with real
elements.

The data sets A and B are used as training sequence to estimate the coefficients of two
models of similar structure and to the approximations of y as a total sample. Projections
9 and 5% of the same vector y on to the L(X) are formed and these are usually non-
orthogonal. Each ith version of the division of the data has corresponding vectors jf‘(i) and 5/5)
belonging to L(X). The ensemble of such vectors forms a “cluster of projections”; ie., a
set of points in L{X); all points of the cluster are grouped around y;5. Models with false
structures are more sensitive to the variations of the training sequence and, as a result,
become significantly displaced from y;s—causing the cluster to widen. Different forms of
the minimum bias criterion provide us with the possibility of estimating the dimensions of
this cluster; i.e., an ability to compare different models.

(i) Increasing the time interval of data in the criterion by introducing a noise immunity
coefficient §7. The minimum bias criterion has a relatively low noise-immunity because the
approximating properties of the models are usually identical on the interval of interpolation.
The squared errors are small for models of any structure except for the simplest linear
models. The performance of models diverge in the extrapolation interval in which the
differences between the model outputs become significant and, consequently, more immune
to noise. Figure 3.5 shows an example of bias estimation for two polynomial models. The
shaded areas indicate the differences of two sets of models (area between the integral curves
4, and $§, and area between the curves ) and 35,). Consequently, the bias estimate of
the second polynomial is significantly smaller than the first one; i.e., 77, < 7, -

Here it is recommended that the minimum bias criterion with additional length of time
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interval should be

TV (5 - P
Th = 3 T” (3.46)

p=1

One can notice that it is applicable only to the nonlinear functions that have quadratic or
higher order arguments.

(ii) Extraction of first harmonic of the output variable. The output variable is approxi-
mated with the harmonic equation using the sets 4 and B as

y“ = ag + a; sin{fwt + 0y),
Y2 = by + by sin(wat + 0), (3.47)

where w; and w, are the fundamental frequencies, Q) and Q, are the phase shifts, and a’s
and b’s are the estimated coeficients. It is assumed that the frequency expansion of the
useful signal without noise occupies a portion of the spectrum which is different from the
signal with noise. If this is justified, then the noise immunity of the minimum bias criterion
can be increased because of the first harmonic. The first harmonic of set A should coincide
as nearly as possible with the first harmonic of set B. The minimum bias criterion is
recommended as

T 5 s
Mhe = ) ;

IR 3.48)
G4 +3°) (

=1

where $4 and Vg are the estimated outputs of the first harmonics. In practical situations, the
fundamental frequencies w; and w; should be closer within the limits of the specified set
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of structures. If the spectral content of the signal and noise are identical, then it is difficult
to filter out the noise.

(iit) Extraction of the linear trend of output variable. If the outputs of the models are
smooth and can be approximated by polynomials, extracting linear parts instead of first
harmonics is recommended.

y?lin) = qag + af,
Yliny = bo+ it (3.49)

The two models to be identified have identical structures. The model y”! (lin) should coincide

as nearly as possible with the model y(li n)’ i.e., the structure of the model is estimated in
accordance to the minimum bias criterion

T Olliny ~ i)
Fltiny * 9 in) %

2

Mos = (3.50)

This provides justification to calculate the minimum bias criterion based on the linear parts.
When the linear parts of the models are slightly dependent on the noise, such a criterion
will have an increased noise immunity.

Example 1. An experiment is conducted to show the effect of the data interval on the

noise immunity of the criterion. The true model is taken as ;: 2 — 0.1#%. Twelve values
of the output variable y(r) are taken, corresponding to r = 1,2, ---,12. The noise intensity
is increased step by step and the optimal models are extracted for each set of data. The
combinatorial algorithm is used with a reference function of the third-degree polynomial
in 1.

y = ap+ayt+ axt’ + a3t (3.5D)

The first minimum-bias criterion most immune to the noise is found by extracting the linear
part with the noise immunity coefficient value 67 =~ 2.0. The second one most immune
to noise has data points arranged according to variance. The lowest one has data points
arranged as even and odd points.

In all the cases, preliminary extraction of linear parts or trends and widening of data
interval with 47 have significant effect; the noise immune coefficient 67 is found in the
range of 1.5 to 3.0.

3.2 Single and multicriterion analysis

Several qualitative estimates of the degree of noise stability can be obtained analytically by
considering just one fixed structure of the model. Suppose the equation y = Xa is written
for the chosen structure. Consider the prediction problem using the prediction criterion

2
AXC) = Z(y Vi< 10, (3.52)

2 —
1€C '))

where J is the estimated output, ¥ is the average value of the output, y is the actual output,
and C is the prediction data set. We obtain the estimates of the coefficients & using the data
set W=AUB,

a = (X"X) "X +6) = ¥+ olag. (3.53)
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This is the sum of the exact value of the coefficient vector and the added quantity which
depends linearly on the noise level (the value of a; is independent of noise variance ).
The predictions based on this model have the form of

B =y°,- +02a§x,- =)(7),- +o? szagx,-, iecC, 3.54)
where ¢ is substituted as a.s. The prediction accuracy is obtained as

AXC) = 0 (alx)?/s" = ® ) (agx). (3.55)

icC icC

We obtain the critical noise level a&* on the basis of the condition A(C) =1 as

ap = 1/ > (alx)?. (3.56)
ieC

Thus, the critical noise level a;; depends on both the volume and grouping of the data, and
on the realization of the noise. However, this estimate does not coincide with the limiting
noise stability of any criterion since, with increase in the noise level, the inductive algorithm
chooses another simpler model, which can predict a noise-free signal more accurately. Even
this is true with the identification and filtering problems. The analytical study of critical
noise levels for identification (o) and filtering (a;) can be developed.

The combinatorial algorithm is used to obtain the optimal model of complexity by sorting
all possible polynomials from the complete basis according to a given external criterion or
set of criteria for the given partition of sets. The degree of noise stability of the selection
criterion is determined by gradually increasing the noise level and finding the critical value
of « in each case.

Example 2. An experiment on estimation of the noise stability of various selection criteria
is made with y° = 10—-0.1/2, ¢t = 1,2,---,22—and a normally distributed white noise with
unit variance is obtained for 22 values. This is realized for the output variable y for
different noise levels of o with percentage values of 3, 5, 10, 20, 40, 60, 80, 100, 130,
160, 200, 230, 260, 300, 330, 360, 400. Four variants of partitioning of data are used: (i)
No+Ng+Nc=7+T7+8, i) Ny+Ng+Nc=8+8+6, (iii) Ny + Ng+ Nc=9+9+4, and
(iv) Ny + Np + Nc =4 +4 + 3 (in all the cases, the points are chosen successively).

The reference function considered here is the third-degree polynomial in t. Combinatorial
algorithm is used for sorting all combinations of the structures (15 polynomials of varying
structure). The following criteria are tested for their noise stability.

Regularity

G

AY(B) = AX(B/A) = \
(B) = A*(B/A) ZU_@?

icB

3.57)

where A?(B/A) denotes the model calculated on the set B using the coefficients obtained
on A.

Minimum bias

A _ 5By
The = 0" — 3 (3.58)

=72
iew o=
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where the estimates 3 and 2 correspond to the same model structure but with coefficients
calculated on sets A and B, respectively.

Symmetric regularity

d* = AY(A/B) + A*(B/A)
= |ya — Xadg|* + |lys — Xaaall*, (3.59)

where parts A and B are used equally.
Here is another form of symmetric criterion;

§2 = AX(W/A) + AX(W/B)
= llyw — Xwaal® + llyw — Xwap|l®, (3.60)

which is an overall estimate on W for the same structure, but with coefficients estimated on
different sequences (just as in the criteria 7, and d).

The combined type: (“minimum bias plus prediction”)

The noise immunity can be increased significantly by using the following criterion.
c3? = i + A0, (3.61)

where 1,5 is one of the realizations of the minimum bias criteria and A(C) is the prediction
criterion that computes the sum of square errors using the set C. This criterion requires that
a model be unbiased and is also the best predictive method.

A common difficulty with direct application of the combined criteria is the incommen-
surability of their input quantities. They evaluate different characteristics of the model,
such as minimum bias and regularization or extrapolation. Therefore, using them requires
choosing and applying weights for each problem.

& = A+ (L= k7, (3.62)

where k? indicates a stabilizing term of the form A%(C) or d*>. To obviate selection of
weights, one uses a normalized form as

2 2

2 _ s k

=t

nmax kmax

= 3 + i, (3.63)

where 7 and k are the normalized values, and Tmax and kpge are the maximum values of
the criteria of all the models being compared.

All the criteria given above can be used individually as a single criterion choice; at the
same time, the combined criteria can be used as two criterion choices. One can also use
a stepwise choice; first choose F number of models with the minimum bias criterion, then
choose the best model among them using the prediction criterion.

Noise stability of single-criterion selection

The combined criterion ¢3 with its normalized form exhibits the lowest noise stability.
Individual criteria operate efficiently with successive application. The regularity criterion is
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Figure 3.6. Relationship between selection criteria and percentage of the noise level o the solid
line is for models chosen with respect to the minimum of the criterion and the dashed line is for the
model y = 10 — 0.17
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Table 3.2. Values of o for different selection criteria

Criterion Different partitions of data
44443 | 74748 | 8+8+6 | 9+9+4
A(B) 20 360 0 40
Tbs 20 60 20 80
c3 0 10 10 0
d 20 80 20 80
S 20 130 20 80

the most sensitive criterion to the partitioning of the data; care must be taken in using this
criterion for noisy data.

The symmetric criteria (15, d, and S) proved to be stable with respect to the partitioning
of the data; they virtually have the same noise stability in the case of individual application.

The results of determining the limiting noise stability o} (identification case) for which
the original model structure was still acurately reproduced is shown in Table 3.2. Figure 3.6
shows the values of the criteria for the structures obtained on the division Ny + Ng + N =
8+8+6. The solid curve shows the optimal structures based on the minimum of the criterion
and the dashed curve shows the actual structure y = 10 — 0.1/2. The limiting noise levels
af and o, (filtering and prediction cases correspondingly) are considerably higher than the
level of the structure for a;.

Noise stability of two-criterion selection

Two-criterion selection is a widely used device in inductive self-organization modeling.
Here we use external criteria of a different nature (for example, 7, and A(B)) that are
related to different parts of data sets (for example, 7, and A(C)). There are two types of
two-criterion analysis—one is in the form of convolution and another is successive in nature.
Sometimes the former may lead to difficulties because of normalization of the criteria. It
often turns out that 7),,,, exceeds A(C) or d by higher magnitudes so that the bias becomes
insignificant and the model is incorrectly chosen by the second criterion. This difficulty
is avoided by the successive use of the criteria. The first criterion is used to select F
number of models—the best one is chosen using the second criterion. The basic results of
successive application of different combinations of two criteria based on the above example
are discussed below.

(i) The combination A(B) — A(C). The noise stability increases to af = 60% (for the
criterion A(B), it is 0%).

(i) The combination 7, — A(C). The noise stability is very significant; the correct
structure of the model is better to a level of o] = 260% (just for n, separately, it is
20%).

(iii) The combination d — A(C) and § — A(C). They yield the same results as the
preceding pair of criteria.

The use of two-criterion selection of models also increases the level of noise stability in
predicting and filtering problems; in case of the combination 7, — A(C), the noise stability
of filtering o is preserved at the level of 360%, and the noise stability of prediction «,
increases from 130% to 400%.
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Usually it is impossible to determine the noise stability levels o™ for actual problems on
the basis of noisy data because the information regarding the exact structure of the model
and the characteristics of the noise is unknown. However, it can be controlled in the course
of calculations. The values of the errors A(A + B) and A(C) are noticeably correlated
with the ideal estimates of R(A + B) and R(C) (new notations). The difference between
A(A + B) and R(A + B) is the denominator term Ziew(yi — )%, that represents the signal
variance, similarly between A(C) and R(C). In almost all cases, A(A + B) > R(A + B), and
A(C) > R(C). This makes it possible to determine the prediction and filtering satisfactory
with the additional conditions A(C) < | and A(A+B) < 1.

There are three ways of testing the operability of an inductive algorithm—with exact
data, with a given noise distribution, and with noise distribution peculiar to the class of
modeling objects. To verify the results, one has to perform a large number of tests in all
the cases. Apparently, it is the only way to solve the problem of definitive verification
of the algorithms, and this is done before it is recommended for practical use. Insufficient
study of verification might lead to certain difficulties in the practical use of these algorithms.
Nonetheless, they can be recommended for solving problems for which other algorithms
are unsuited; for example, problems of detailed long-range predictions.

Correct choice of criteria and of the application sequence ensure achievement of quali-
tative noise stable modeling. Further increase in the noise stability is achieved through the
use of multilevel schemes which are described in Chapter 2.

4 ASYMPTOTIC PROPERTIES OF CRITERIA

In this section we present the recent work of Stepashko [120] on asymptotic properties of
external criteria for model selection.
The structural identification problem consists of choosing an estimate of the model

}o’z ag ;7 X= (;1, e ,xio), where ; and x are the output and input vector actions, corre-
spondingly, and ay is the actual parameter vector, which is optimal according to a specified
combined criterion of minimum-bias plus regularity from a set of various models which
contain all possible combinations of m (> s°) input variables. The best regression model
is obtained according to the combined criterion from the 2™ — 1 possible models under the
conditions of noisy output y; =§,» +o&;, E[§]=0, E[§€] = azé,j, where F is the mathemat-
ical expectation, &; is the kronecker delta, and o2 is an unknown finite variance. Ny is the
number of points in the given data set.

A simplified version of this problem, which does not restrict the generality of the obtained
conclusions about the asymptotic properties of the external criteria, is investigated here.

It is considered as searching an optimal model by successive inclusion of regressors x;.
The set of compared models consists of m various models of the form

S}S‘ = X.\‘&Sv §= 1a27"')m, (364)

where X, = (x1,---,%) = (Xs—1,%5), s is the complexity of the model, and where the
parameters are estimated by the least squares method as & = (XT X,)7'X7y.

The structural identification problem is reduced to the determination of the optimal com-
plexity of the model as

*

s* = arg min c2(y, ¥), (3.65)

s=1,m

where ¢2 is the combined criterion evaluated by using the actual and estimated values of
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the output. The whole data set W is partitioned into two subsets A and B such that

X4 ya
X=  y= . rank {X4)} = rank {Xz}=m, N=AUB.  (3.66
(XB> y ()’B) rank {Xs} = rank {Xp} =m ( )

The ideal (theoretical) criterion of minimum variance of the forecast J (and of its estimate,
the combined criterion) are examined. Two variants of the theoretical criterion that are
averaged over the number of points in the sample for which they are calculated, are given
below:
1 o
Js,N) = SE| Y ~X,a4%, (3.67)
1 o .
Jo(s,Na, Ng) = 5-El| yp —Xnctaas 1, (3.68)
B

and the external criteria; regularity and minimum-bias

1 N
Ap(s,Ny,Np) = YA llys — Xgsttas*, (3.69)
B
| .2
'I’]bs(S,N) = N“XsaAs - XsaBs” . (3.70)

An optimal smoothing model corresponds to the solution of the problem with respect to
the minimum of J(s, ), and an optimal forecasting model corresponds to the minimum
of Jg(s,N4,Ng). The external criteria Ag and 7, are their estimates. To investigate the
behavior of the theoretical as well as external criteria as N — oo, it is assumed that the
matrix X satisfies the strong regularity condition;

1 -
lim —X{Xy=H 3.71
N—oo NN N ! ( )
where H is a nonsingular finite m X m matrix.

The characteristic results of the solution of the structural problem according to the given
criteria for o2 = var,N = const, and 0> = const, N — oo are compared below for the
adopted assumptions.

4.1 Noise immunity of modeling on a finite sample

When solving the above structural identification problem, one has to estimate the parameters
for each set of regressors as s = 1,2, - - -, m. This can be done conveniently by the recursive
algorithm presented in the preceding chapter for constructing the partial models of gradually
increasing complexity, beginning with a single argument (“method of bordering”). (Refer
to the section on “Recursive scheme for faster combinatorial sorting” in chapter 2.)

For quick reference, we briefly give the algorithm here. X7X and X"y are denoted as H
and g, correspondingly, and H, g;, and &, are represented in the form of

H—l h 8s—1 ~ 21*__
H, = q $ y 85 = y s = {\1 ’ 3.72
s[hfﬁs]g [%]a [a] G

where &, = XT_ x;, 95 = xTx;, and v, = x7y.
The following recursive algorithm is valid for the calculation of H;! and &;;

Be = 1/(9; — hlc,), ¢s = H7\\hy, Hy'A=0, (3.73)
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Hs_l = - — - — | ————1, 3.74)
71856{ l ,Bx
A e I S [
ag=} —— — — —— = &s y a()A=O. (375)

By(ys — 81 1c5)
This algorithm can be used directly for the criterion J(s, N), while for Jg(s, N4, Np) and Ag,
it is applied using the subset A (using the index A). For 7;, the quantities are computed on
both the subsets A and B.
Properties of the criteria J(s, N) and Jg(s, Ny, Np)

These criteria are reduced to the form;

1 o 2
Hs, Ny =P +17) = 2| Y Xl + %s, (3.76)
* 1 ° 2 02 —1
Ju(s,Na, Ng) = Jp(s) + J5(s) = ﬁ” y8 —Xpsaas|” + N, tr (H,, Ha,). (3.77)

The parameters a; and a,, are estimated either by using the least-squares technique or by
using the above recursive algorithm and substituting ; for y; i.e., a; = E[a,], ass = Eldss].
Here, J%(s) and Jg(s) characterize the structural bias, while J*(s) and J3(s) reflect the effect
of noise. Obviously, ap = a0 = ap, so that J(s%) = Jg(so) =0.

Let us examine J(s); one can obtain

Py =% -1) - %af/ﬂs =S -1)- Al,ﬁs(% — gl e, (3.78)

where 3, = xT(] — X;—1(XT_;Xs—1) "' Xs—1)x, is positive and equal to the ratio of the deter-

minants of the matrices H,_; and H,. Thus, J°(s) is a monotonically decreasing function of

the complexity s so that in view of J*(s) = J°(s) the function J(s, n) for ¢ > 0 always has a

single minimum at the point s* < s°. As o2 increases, the complexity s* decreases. A sim-

pler model becomes J-optimal. This property is named “noise immunity”; i.e., the error in
o

reconstructing the noise-free vector y decreases due to the simplification of the model. This
means that the model of s° loses its J-optimality for the variance 02 > 02.(s°) = o%/B0.
In general, for arbitrary complexity s, the transition from s* = 5 to s* = 5 — 1 occurs for
a? > o2 (s), where

ol = N — 1) = () = a2/ B;. (3.79)

oy is the coefficient of the sth regressor and ‘cr’ indicates the critical value.
Let us examine Jp(s); one can obtain J%(s) as

Jos) = Jos — 1) — 200a4(¥5 ~Xps—10a,5-1) (xps — Xp s—1€as5)
+ a,%xHst - XB,s—chst- (3.80)

Here, one cannot guarantee that the increment will be negative for every s (except when the
regressors are orthogonal), so that in the general case the decrease from J9(1) to J9(s°) = 0
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is not monotonic. The monotonicity of the dependence on s is preserved for the noise
component Jg(s). This fact is proven below on the basis of the recursive algorithm, with
hps = Xg,s_lxgs and ¥g, = x§ xp; taken into account.

. o? B i ’ o2 B B
Ty = ot (Hyp'Hgs) = Jp(s — D+ w7 BasOHG S sy yhas =
B

2
_ " g _
=23 Ha s 1has + One = Jp(s = 1+ = Baollis — XpsmrHy g yhas? (3.81)
B

The increment change in this equation is estimated, having determined the extremum of the
vector argument (2) = 2" Hp ;12— 22" hg,+Up,, where zA=H] (_ hy,. If we differentiate
with respect to z and equate it to zero, we obtain zo = H;’_:_lhgs. Since Hg ;_1 1s a positive-
definite matrix, ((z) for z = zp has a positive minimum; ¢(zp) = 9p; — hk, l;,.:-—lhBS = 1/0g;.
Thus, the minimal increment change of the trace in the equation of Jg(s, Na, Ng) equals
Bas/Bps, and is attained when the relation

Hy \has=Hg,  hps (3.82)

is satisfied. In particular, this relation is satisfied when Hg, = X2 Hy, or Xg = AX,, where )\ is
an arbitrary constant. Here tr(HA‘S1 Hg)=1r (H;,;_IHBJ_l)+)\2, so that the rate of growth of
the trace is proportional to the value of A? as s is to one; i.e., even if the relation is satisfied,
the examined increment may be arbitrary. Thus, as the component J§(s) in the equation of
Jg(s, N4, Np) decreases, and Ji(s) increases monotonically as the complexity of the model
s increases, the minimum of Jg(s, N4, Np) is possible only for s* < s°. Qualitatively
the behavior of the criteria J(s, N), Jg(s, Ns, Np) is the same. Moreover, for a model of
complexity s°, one can establish the threshold of the J-optimality loss. For this, it is

. o T .
considered that yg= Xgoap = Xps—1a%_, + xpoo, where ag = (a% | ap)’. Furthermore,
according to the recursive relation, a?o_l =G4 0| — QapCag, Qa0 = v, and, consequently,

[v]
yB —Xpw_10a 01 = Cu0(Xpo — Xp 0_1Cap),

J3%) = S0 — 1) — ape || Xpe — Xpo_ca0l? (3.83)

From the conditions Jp(s") = Jg(s® — 1), J9(s°) = 0, considering the equations for J3(s°)
and J3(s), we obtain

o2(s") = ado/Bap. (3.84)

Thus, the condition for losing the J-optimality for a model of actual complexity s° (with an
unbiased structure) turns out to be completely identical in problems of search for optimal
smoothing and prediction models. This property is determined solely by the properties of
subset A. This result can also be obtained by using different transformations. It is noted
that 02.(s%) does not depend on the number of points Np but depends implicitly on Ny.

Properties of the external criteria

The mathematical expectations of the regularity (Ag(s, N4, Ng)) and minimum-bias (17,:(s, M)
criteria are equal to

- 1 o (72 -
Ap(s) = N—Bn v —Xpsaas||* + Ny Mot (Hy'Hgy)), (3.85)
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1 o? - -
Tios(8) = 1 Xsas = Xsaps||” + 525 + tr (Hy Hys + Hy, Hp,)). (3.86)

Comparison of the equation Ag with its expectation Ay yields
Ag(s) = Ju(s, Na, Ng) + 0. (3.87)

This means that the minimum of the regularity criterion Ag gives an unbiased J-optimal
model, since the minima of Jg(s) and Ag(s) always correspond to the same optimal com-
plexity s*. Hence, the regularity criterion has the necessary property of noise immunity and
other properties of the criterion Jp(s, Na, Ng); for example, the actual structure is optimal
for 0% < 02,(s9).

The criterion 7js(s) was worked out in detail in the work [118]; it was shown that,
if the condition (X1X4)~'X7 Xc'),ﬁ! (XIXp)~'X} )gB is satisfied, then it has a single global
minimum. Biased values of its model structures decrease from 1;(1) to m,5(s%) = 0 (possibly
nonmonotonically) while the noise component increases monotonically. Consequently, the
minimum-bias criterion 7):(s) has the noise immune property.

4.2 Asymptotic properties of the external criteria

As N = Ny U Np, one has to examine the case of N — oo as well as its variants: Ny —
oo, Ng — oo, and N4, Ng — oo. In addition to the assumption that limy_, o I%X[,XN = H,
let us assume that the matrices X, and Xp are regular and are formed independently.

1 _ 1 _
lim —XE Xun = Ay, lim —XE Xpy = )
NAiﬂw N, KanXan = Ha, NBinm N, XenXay Hpg, (3.88)

where Hy, Hy are finite nonsingular matrices. The limits in the above equations exist for
individual element of the matrices and for each of their blocks. Thus,

1

Jim vy = by, 1) =1,2,,m,
1 _ Bll o l—lls
Jim NX:TNXW:H3= IR I (3.89)
hsl o hn

where 1_1,»j and f, are the finite numbers and matrices, respectively.

(o) [e] . .
Taking the actual model ( y= ag ; x= (xol, - ,x:o)T ) of the object into account, one can
write the following relation in matrix form as

=Xy ao =Xy ap + Xn0A=Xya*, (3.90)

where ) is the zero or empty vector of dimension (m — s°), and a* = (a},97)7 is the finite
vector of the actual parameters.

The assumption of limiting transition as N — oo implies the existence of the finite limits
as

) 1 %o T = . _
NILIT;O N yiyn= a* Ha*H=, (3.91)

lim X% yy= Aa*A =3. (3.92)
N—oo
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Similarly, the existence of fi4, jig, 84, and 2z for other assumptions is Ny — oc and Ny —
0.

In asymptotic problems of control theory, the condition of mean-square summation (in-
tegrability) of functions is usually a common assumption. From the well-known relation
between the elements of the normal matrix X"X : x]x; < (x]x; + x]x;)/2, the mean square
summation of observations of all the individually taken regressors is written as

N
.1 7 | =
Nl~1—4n;o Nstst = Nllvn;o N Z—l Xis = 195, 5= 17 27 Tee,m, (393)
based on the convergent sequences for all %x{,,-xNj, i£j 6,j=1,2,---,m.

Properties of the criteria J(s, N) and Jg(s, N4, Np)

The structural components of these criteria are represented in the form

(o}

1 o o
(s, Ny = N (vhyn —alyXow ), (3.94)

J3(s,Na, Np) = X,;(yﬁgyﬁg ~2aly X0, ynp +aly X0y Xovuaum,). (3.95)

The convergence of the parameters in these equations is established on the basis of the
limiting transitions given as

lim an = A, 'gA=a,, lim aw, = Hy ga A=, (3.96)
N—oo Ng—»o0

Taking J*(s,N) = azs/N into account, we obtain
Js) = lim J(s,N) = lim J%s,N) = i — gl H; 'g,. (3.97)
N—oo N-—ro00

It is obvious that for s = 1,2,---,s% J(s) decreases monotonically, while for s > s° the
quantity a; = a*, so that J(s) = 0. Thus, if the quantity J(s,N) for o> > 0, and N > oo
has a minimum of s* < s°, then there is a compromise between its structural JO%s, Ny and
noise J*(s, N) components. As N — oc, the component J*(s, N) disappears (an increase in
the amount of information removes the uncertainty) and the minimum of J(s) corresponds
to the actual unbiased model structure.

In the case of Jg(s,Na, Np) = Jg(s, Na, Np)+Jj(s, N4, Ng), one has to consider the limiting
transitions for Ny — oo and Ny — oo. Finite values are obtained for the structural
component J9(s, Ny, Np) by taking into account its convergence property of parameters.

. . 1 _ o

Ta(s,Ng) = lim Jp(s,Na, Np) = 5~ (up — 23,8s + GasHp,as), (3.98)
AT B

J3(s,Na) = lim Jy(s, Na,Ng) = ig — a5y, Bps + iy, Hiscion, (3.99)
B—»OO

o
where pp =y,7QBy;B, g = limNBHoo pg. Convergence of the noise component J;(s, Na, Np)

is determined by the asymptotics of the trace tr(H;(Sl Hpy) in the equation given for Jg(s, N4, Np).
Ji(s,Ng) = Nlim Jg(s,Na, Np)
A~ 00
2

o 1 1 -
Y lim — —_ . =0, 3.100
NB N/ll—l;noo NA ir (NAHAS) HB 0 ( )
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(s, Na) = lim J3(s,Na,Ng) = 0% tr (H,;A’J_{BS) < 00. (3.101)
B—»OO

Thus, as Ny — oo, the noise component disappears and the properties of jB(s,NB) become
analogous to the properties of J(s). However, as Ng — o0, the uncertainty caused by the
parameter estimates a4, from a finite sample is not removed, and the criterion J(s, N,) =
jg(s,NA) +];;.(s, N,), where Ny4 is finite has the same properties as the equation given for
Jg(s,Na, Ng). This means that if the parameters of the model obtained on a finite sample A
and the model is applied on a infinite sample B, then the minimal variance of the forecast,
in general, is achieved by a model according to noise immunity (J-optimal), rather than to
an unbiased model which depends on 2.

If N4 — oo and Ng — oo, we obtain from the above equations
Jis)= lim lim Jj(s,Na,Ng)=0
Ng—oo Ngy—oo

Ja(s) =T5(s) = lim  Lim J9(s, N4, Np)

NB—*OO NA——*OO

= fip — zaAsgsB + aA.\‘I:IBsaAS < oo, (3102)

where Jg(s|s > %) = 0, as it is for Jz(s, Np).

This follows that the criteria J(s) for N — oo, J(s,Ng) for Ny — oo, and Jg(s) for
Np,Ng — o0 converge for any s. Their minima equal to zero which corresponds to the
actual model; s* = s°. This result is because of the consistency of the least squares estimates
of the parameters of unblased structures s > s¥ and the convergence of these estimates for the
biased structures s < s°. This established regularity of the asymptotic behavior of the criteria
J(s,N) and Jg(s, N4, Np) is called “consistency property.” As the sample length increases,
the actual model which corresponds to the minimum or zero value of the criterion, becomes
the limit of the optimal smoothing and forecasting model. Because there is no appearance of
the expression concerning o2, the indicated property is valid for any variance. This means
that the critical values of the variances o (s) and aL,(so) (the expressions given above)
should approach infinity as N — oo and N4 — 00, accordingly. In view of the established
convergence, the concerned parameters turn out to be finite: &; = limy_.oc v < 00, as
well as 0 < 00. At the same time, for any s, the given equation for 3 in the recursive
algorithm is obtained as

3, = lim B

1 1
1/{N(%195N Nh ( HN) NM)H:O. (3.103)

Analogously, the relation G40 = 0 can be established by virtue of the limiting transitions
that proves the assertion that a (5, N) — oo for o (s ,Na) — 00 and Ny — 0.

It is obvious that any estimates of the criteria J(s, N) and Jp(s, N4, Np) used in practice
must have the “consistency property.”

lim
N—oo

Properties of the external criteria

The convergence of the regularity criterion Ag(s) = Ag(s, Na, Np) for the cases Ny —
0o, Ng — oo and Ny, Ng — oo, and any s follows from the relation Ag(s) = Jg(s, Na, Ng) +
o2. The first and third cases are of interest with regard to “consistency property.” One can
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obtain any s by taking into account the obtained finite values on ]g(s,NB) and jg(s).
Ap(s,Np) = lim Ap(s,Na,Ng) =Tp(s,Ns) + 0°, (3.104)
400

Ap(s)= tim lim Ag(s, N4, Np) = J%(s) + 0% (3.105)
Np—oo Ngy-—00
For the limiting transitions considered, taking into account the properties of the quantities
J%(s, Ng), 79(s), the minimum of the criterion Az(s, N4, Np) is

min Az(s, Ng) = min Ag(s) = o?. (3.106)

Thus, the minimum of the mathematical expectation of the criterion Ag(s, N4, Ng) is an
asymptotically unbiased estimate with the unknown noise variance and corresponds in the
limit to the actual model, which has the “consistency property.”

The asymptotic properties of the consistency criterion 7,,(s) = 7,(s, N4, Ng) are to be
determined by performing on the established relation 7j,,(s) a double limiting transition
such as N4 — oo and Ny — oo. It is convenient to adopt the commonly applied condition
N4y = Np; then N = 2N, = 2Np. First, the deterministic component is considered and
represented as

1
Mo, Na, Ni) = +(ans — aps) Hy(ass — ag,). (3.107)
Taking the limits, we have

fin(s) = lim  Lim n)(s,Na, Ng) = (@as — ap,) Hy(aas — aps) < 0o,  (3.108)
NA—-»ooNB—»oo

where 7). (s|s > s°) = 0.
Second, the noise component (from the equation js(s)) is considered for performing the
limiting transformations. This is analogous to the relation we got for Jg(s, Ng);

ps(s) = lim  lim 7;.(s, N4, Ng) = 0. (3.109)
NB—vooNA—»oo

This means that the mathematical expectation of the minimum-bias criterion also converges
for any s and has the ‘“consistency property.” Moreover, this criterion can be viewed as
the asymptotically unbiased estimate of the values of J(s). Hence, using the minimum-bias
criterion is preferred in searching for the optimal smoothing model, while it is better to
use the regularity criterion in the search for an optimal forecasting model. The regularity
and minimum-bias criteria, in addition to the noise immunity, also has the “consistency
property” that permits the applicability of the inductive algorithms for complex problem-
solving by using small as well as large samples of data observations. The reader can also
refer to works on analogous results of Dyshin [13] [14] and Aksenova [2] for further study.

4.3 Calculation of locus of the minima

This section describes a procedure for calculating the locus of the minima (I.M) for ideal
criteria [121]. This is important because extrapolation of LM allows one to detect a true
signal from the noisy data.

In the course of a numerical study of simulating properties of noise immunity, the fol-
lowing computational experiment is considered. An actual model of an object is given by

o o . [o] o o o . . . ~
y= ag x, where input vector x= (x,xz, -, x0). Based on this the noisy observations of the
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true output at N points are calculated; y; =§,» +o&;, where o is an arbitrarily selected variance
of the noise and &; are known realizations of uncorrelated noise with E[£;] = 0, E[{f,-z] =1.
In the experiment, the number of points N, the realization of £, and the variance ¢ may vary.

Moreover, it is assumed that there is an extended vector of input variables x = (;,)?T) with
the dimensionality of m > s°. Models of different combinations of m input variables are
compared; $ = &'x. This corresponds to an application of the combinatorial algorithm for

modeling the actual signal ;: ()?hyoz, e ,yc;v)T by comparing all the models of the above
form or in the matrix notation

Vs = Xsa5, s=1,2"—1, (3.110)
where parameters a are the least-squares estimates
a, = (xXTx,)~'xTy, (3.111)

calculated using the noisy output vector.
The aim of this computational experiment is to compare the efficiency of various criteria
for selecting models in relation to the ideal criterion

AN = || Y =35> = | ¥ —Xa7, (3.112)

that gives a measure of precision in recovering the actual signal ; by means of the model
¥s obtained using the noisy data for each s. By varying s one can obtain optimal value
50 (optimal structure) and the corresponding minimum value of the criterion An(s®) for
different £ and o. It is convenient to pose the above problem according to the complexity
of the models as per their number of input variables. Evidently, there are C!, models of
complexity for s = 1, C% models of complexity for s = 2, and so on to C" = 1 models of
complexity m. The minimum value of Ax(s) is determined for each s. It will then constituie
the characteristic Ay(s) and Ax(s) = An(s°), so that the optimal value s° corresponds to a
model with the minimal variance.

Let us assume that the values of Ay(s) are obtained for s = 1,2,--- m by successive
inclusion of regressors x; and that the properties of the functional J as the mathematical
expectation of the Ay(s) is

JGs) = E| Y ~ X2 (3.113)
It is shown before that

J(s) = J°%s) + J5(s) = E|| Y —X,a, || + o2, (3.114)

where a, = (XTX,)~'X, Y= E(@a,).

J%(s) is a monotonically decreasing function with complexity s, where J(s|s > %) = 0;
J(s) has a unique minimum for certain optimal complexity s* < s°. This minimum shifts to
the left as ¢ increases (refer to Figure 5.3). Apn(s) possesses the same properties, as shown
before (for regularity criterion).

An(s) = AY(s) + Ax(s) = JO(s) + 0%ag, X] X,digs, (3.115)

where ag; = (X7X,)7'X7€, and Aj(s) is a monotonically increasing function.

Optimal intervals of each model can be calculated by using systematic algorithms.

The notion of the “locus of the minima” of a criterion is defined as a function J,,;,(s)
or A,i.(s) whose value corresponds to the critical value o.(s) for which the model with
complexity of s — 1 becomes optimal instead of the model with s.
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Algorithm for calculating the LM of J,,;,(s)

Let us assume that the regressors are included in the model in order of the correlation
coefficients between the regressors and the actual output.

N — \,0 °
(X — X)) — )
roe = 2 0; . s=1,m, (3.116)

(Zj)il(xjs - )_63)2) (ZJ}L(SJ h ;)2) E

and the regressors are ranked in decreasing order of the correlation coefficients.
The algorithm consists of the following steps:

-

1. calculating the matrices X7X, X7 )O/ for the Gaussian normal equations for the full
model;

2. computing the least-squares estimates of the parameters &, using the equation X? X;a; =
[o]
XTy;

o
3. determining the quadratic error of the estimator ¥ using the least-squares method as

sy ="y —a'XT y; (3.117)

4. calculating the estimate of ag;;
5. determining the J%(s + 1);
6. calculating the decrease in error due to the inclusion of regressors by one:

621 = %) — (s + 1), S = 0; (3.118)

2

7. determining the ordinate of LM of the ideal criterion at point s: J,,;,(s) = Jo(s)+s6x 15

*®

increasing the complexity by one unit. Return to step 4.

Note that these calculations can also be conducted by using the recursive algorithm.

Algorithm for calculating the LM of A,,;,(s) for an individual realization
of the noise vector

As in the above algorithm, the regressors are assumed to be ranked in decreasing order
according to their correlation coefficients.
The algorithm consists of the following steps:

1. calculating the matrices X"X, X7y, X"¢;
2. determining the estimator g, and the errors of this estimator a¢, due to the presence

(o)
of noise. Here g is the solution of the equation X7 X,a; = X7 ¥, and &g, is the solution
of the equation X7 Xa¢; = XI¢;

3. calculating J°(s) using the formula J°(s) =Ty —aSTXZ; as well as the quantity
A =EE = al XT X, (3.119)

as it is given in the equation An(s) = AY(s) + AX(s) = JO(s) + UZ&LXSTXS&&;

4. determining the estimators of a,,;, and &g ol
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5. calculating the quantity J%(s + 1) and X2, = £7,,€,4; = af 1 X0 Xoe1 B g1
2

6. calculating the increments of 67, and the amount of increment of the random com-
ponent A of the criterion Ayx(s) with complexity:
S = A0 = AL (3.120)

s+1
7. obtaining the ordinate of the LM of the criterion Ay(s) as
Amin(s) = J(s) + 67, X2 /82, s (3.121)
8. increasing the complexity by one unit. Return to step 4.

Note: The above algorithms describe the calculating LM for two forms of an ideal criterion.
Extrapolation of LM allows one to detect the true signal from the noisy data [45]. To
develop an algorithm for calculating LM of the minimum-bias criterion, certain conditions
are imposed on the subsets A and B. The criterion is represented in the form of a difference
of LM of two ideal non-quadratic criteria as

o = 5= 31| = 15% = ¥ || = min. (.12

In the same way, one can also eliminate ; for special data samples. If all these are possible,
then the inductive learning algorithms can be replaced by analytical calculation of LM for
number of criteria. This leads to additional investigation.

5 BALANCE CRITERION OF PREDICTIONS

The criterion of balance-of-variables is the first of several kinds developed as a balance
criterion. It is the simplest criterion to use to find a definite relationship (a physical law) of
several variables of the process being simultaneously predicted. This has opened the basis
for long-range predictions using the ring of ‘direct’ and ‘inverse’ functions and is similar
to the balance-of-variables criterion [117].

The balance criterion is designed to choose models of optimal complexity with respect
to several interrelated variables being modeled. This occupies an important place among
the external criteria because of its nature as a system criterion and because it is used in
two-level algorithms. It is still in its basic form in the multilevel modeling of different
practical problems. Let us give a general form of the criterion. Later, we should delve into
the nature of change in position of the minimum with increase in noise intensity.

First, we give the balance criterion in a set of interrelated variables to be modeled. Let
us assume that some connections are known or established between the variables at every
instant of modeling; for example,

& = fOr,y2,-- L) kEW (3.123)

is a known connection, where y;,y,,---.,y. are the interrelated variables which are inde-
pendently identified. The balance criterion is written as

By =) [(13/( _f@jk)}

kel

2
, (3.124)
where ¢ and $ are the predicted values of ¢ and y. The established connection is a constraint

that all the functions yy,j = 1,2, -+, L are assumed to satisfy both in the interpolation region
k=1,2,--- Ny, and in the prediction region k = 1,2,-.. N¢.
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The balance criterion By is intended to reflect either nonlinear or linear connection
between the variables. The nonlinear balance connection is known in the form of the ring
of differences of the “direct” and “inverse” functions. The linear relationship among the
variables being modeled can be established as

L
¢ = Y By k=1,2,---,N, (3.125)

=

where 3 are the balance coefficients which are determined from the experimental data. This
enables us to generate a linear balance criterion of the form

L
B?lin) = Z[d;k - Z Budul?, (3.126)
1

keG j=

where G is the set that belongs to an arbitrary part or prediction part of initial measurements.

The linear type of the balance criterion is widely used in inductive learning algorithms.
They are often based on a precisely known relationship; for example, the change in the
population of a city is always to the population increment minus its decrement during a
certain period; total biomass of a plant is always equal to the sum of the biomasses of the
parts above and below the surface. In these examples, the balance coefficients are unity.

Second, given here is the balance criterion using the relationship of moving or sliding
average as a variable and its elements. This can be used successfully in algorithms for sep-
arately predicting the chosen time functions defined from the series data y, k= 1,2,--- /' N.
The balance connection is

1 +L-1
Fe=7 DL v k=120 Ny (3.127)
j=—3id—D

The relationship holds between the measured and averaged values of length L. The balance
criterion is written as

1 +3(L—1)
2 _ \ 8 s 12 .
B = h—7 2. Sl (3.128)
keC jz—%(L—l)
which is based on the predictions of the ¥ and y;,ys,- -, y. of the process.

The moving averages ¥,k =1,2,--- N — L from the initial data y;,j = 1,2,---,N can
be obtained by using the matrix o [N — L x N] form [130] as

1

y = [ON-LNY; (3.129)

where yT = (yiy2---yn); 7 = (F1¥2 - - ¥n-1); and
11 ... 10 ... 00 ... 00
01 ...11..00 ... 00
ON—-LN =
00 ..00 .. 11 ...10
00 ...00 ..01 ... 11

The matrix used here has consecutive 1’s of length L in each row. In adjacent rows the set
of 1’s is shifted one place to the right. The averaged vector ¥ is of length N — L. The above
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criterion can be formally put in the form as below, though y; are not individual variables
to be modeled.

L
Bl =Y (=) By (3.130)

keG i=]

where Y, = yi; B = 1/L; and yi = yiog—@—1y/2)-

The linear concept of the balance criterion is extended further as a balance-of-predictions
criterion in modeling of time series data which is cyclic in nature. This is used in algorithms
of two-level predictions, in which the connection between the predictions of artificial vari-
ables g;, j=1,2,---, L is obtained from the time series data q¢, k=1,2,-. -, by averaging
on different time intervals; for example, season and year, month and year, and hour and day.

In general, we assume that a year contains L arbitrary intervals, the months. At the lower
level of the algorithm one predicts the mean monthly values of the process and at the upper
level, the mean yearly values. This means that we use two-dimensional time readout in
months ¢ and years 7 instead of actual one-dimensional time readout, in the usual manner of
continuous mean monthly data. There is a unique pair of values (+,7); t=1,2,---,L; T=
1,2,---,N, where L is number of months (twelve months), and N is number of years, for
each observation corresponding to the original measurement. The average annual values Qr
and the monthly values g, 7 are connected by the relationship called calender averaging.

L
1
Or = Z;CI:,T- (3.131)

The balance-of-predictions criterion has the form

L
R L
BL, =Y (Or— . > g0 (3.132)
=1

TeG

This type of criterion is used in various applications; for example, predictions of river flows,
air temperature [65], and the elements of the ecosystem of a lake [48].

The operation of calculating the mean annual values Qr can be represented in the matrix
form as

1
Or = —oNkq, (3.133)

L
where g is the vector of K elements, Q7 is the vector of N elements, and ¢ is the matrix of
[N x K] as given below:

111 ... 100 ... 000 ... 000 ... 000 ... 000
000 ... 011 ... 100 ... 000 ... 00O ... 000
onx = | 000 ... 000 ... OI1 ... 100 ... 000 ... 000

000 ... 000 ... 000 ... 000 ... 001 ... 111
Each row of the matrix oy x contains L 1’s and each column contains a single one; a fact
that differentiates calender from the moving averages.
In this modeling, different monthly models are obtained with the consideration of both
the other monthly values and the annual values; i.e., the delayed arguments in months as

well as in years are considered in obtaining the monthly models. Therefore, the expression
By.qr has formal equivalence as in By, Any balance criterion can be called a criterion of
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balance of predictions as long as the predictions of different variables are compared as in

Bliiny.
One can consider the general form of external balance criterion of linear type with the
given balance coefficients 3;, j = 1,2,---, L in vector notation as
¢ = Oly2l - y)B = YB, (3.134)
where ¢ is the N-dimensional vector; Y is the [N x L] matrix; and 87 = (31, B, ---, B) is

the vector of balance coefficients. The balance criterion is written as
Bl = (66 — ¥6B (b6 — ¥6B) = |d6 — VBl (3.135)

which is used on set G.

The important thing one has to note is that the balance criterion which is established
among the variables ¢ and y;, k= 1,2, .-, L indicates the linear dependence and has to be
taken into account when using the balance criterion while process modeling.

5.1 Noise immunity of the balance criterion

Here we assume that the variable ¢ appearing in the balance criterion is physically measur-
able and that the balance coefficients are given (as a special case, 3; = 1/L).

Let us assume that the measurements of all the jointly modeled variables ¢, yi, y2, ---, ¥y
are noisy.
o o .
¢ =Yo +£0; ¥Yi =Yi +£i; = 1>27"'1L9 (3136)
o] [o] (o . .
where vy, y;,---,y. are the vectors of nonnoisy measurements, all the noise vectors & are

independent of each other, and they normally have distributed independent components with
mean zero and given variances.

EIE1=0, EI6ET = 02y: j=0,1,- - L,

where E is the mathematical expectation and [ is the identity matrix. The exact models of

the variables ; have the forms

y‘}=§,bj?; j=0,1,2,---,L, (3.138)

where )?j are the [N x s})] matrices of true independent arguments, b7 are the [s) x 1] exact
vectors of coefficients, and s? denote the complexities of the true models.

In self-organization modeling, one seeks for the optimal approximations to the true mod-
els from the noisy observations. The partial models are generated by sorting among the
basis sets of N x m; arguments X; in which there are also, by assumption, true arguments

o

X;; that is, m; > s}),j =0,1,---,L. Thus, in the sorting, one determines the coefficients in
the partial models of differing complexity for each of the L + 1 variables in the conditional
equations of the form

X','Uj)aj{sj, =y Xj(xj) [N x 5], ajuj, [s; x 1], (3.139)
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where s; denotes the complexity of the partial model for the jth variable considering yy as
¢ for uniformity. All s; vary independently, and the vectors of coefficients are determined
by the least squares method using the noisy data.

aJU) [ ](s) J(s >]_1XJ(T3 Y- (3.140)

For the existence of the inverse matrices, we assume that N > max(m;, j =0,1,2,--- L)
and that all the X; have full rank.

The data sample (of length N) is not partitioned into number of sets because the balance
criterion can be used on the interpolation region of the data. This means that all N points
of the data are taken into consideration in all operations of the modeling.

The estimates for each variable being modeled can be written as

yj(s») = Xj(:-)aj(s-)

Jﬂ)[ J(s; 1“ ] .I(SJ

= Piyyi =Pig, 0 +6): J =0,1,2,-+, L, (3.141)
where 3o, and yo are considered as by and ¢, tespectively, for uniformity, and P, j=
J
0,1,2,. .-, L are the projection matrices. The balance criterion can be obtained as
2 5 5 5 2
B(lin) = “yO(SUj - (yl(sl)l T ‘yL(sL))ﬁ“

= ”PO(SO,)’O - (Pl[gl,)’li T IPL(-\'L)yL)'BHZ
= ”[PO(SO) ;0 7(P1(s,; )'?1 J T IPL(.;L) -)?L)ﬁ]
+[Pog, €0 — Pry il 1Pry, EDBY (3.142)

The objective of the balance criterion is to obtain consistent optimal predictive models for
each of the L + 1 variables connected by the balance law. The criterion By, is to be
calculated for all variants of the partial models of varying complexity. The total amount of
partial models is calculated as

L L
ps = []pn = []@" - D. (3.143)
j=0

J=0

If m; = m, then the complete sorting is proportional to 2L obviously, in complex problems,
for large m and L, complete sorting becomes impossible. We can tentatively assume that, as
in the case of the combinatorial inductive approach, the complete sorting is efficient when
mL < 20. For four seasons (L = 4), we can allow m = 5 arguments in each model of the
seasons. For more complex problems, it is essential to apply proper way of sorting. Here
let us assume that complete sorting is made. We shall seek the minimum of the balance
criterion.

B(mln) - min (]m) [ay (‘va yj)] (3 144)
i= lpm j=0.L

The value of B(m,,,) determines the set of models of optimal complexity s/, j=0,1,2,--- L
for each of L+ 1 variables. Now let us see how the choice of models of optimal complexity
changes with increase in the noise variances ajz, j=0,1,2,--- L;ie., let us investigate the
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noise immunity of the choice with respect 1o the balance criterion. This is analyzed in the
mean value sense; i.e., with respect to its mathematical expectation.

Keeping in mind the noise properties, the fact that PJ-TPJ- = Pf =P;j=0,1,---,L, and
applying the mathematical expectation to the above derived balance criterion

By = ElBfin) = |IPoy, yo —(Pm,) Vil 1P, yOB)

+0250 +Zoz,ﬁ2s, = 32 + B} (3.145)
i=1
Thus, the expected value of the balance criterion B, has two components: B, imbalance
s
in the modeling of exact data, and 32 reflects the action of the noise.
First, let us look in greater detail at the component B2 and then at the B(,m) as a whole.
y

B; = ||Po, Yo =Py, il 1P, yo)BIP
= ”XO(SO,BOUO, - (X|(51,51‘51,| e |X’L4SL)1A7L(3L,)5”2
= IS5y, — G |-+ 152, D8I
= |95, — Y°B8II. (3.146)

Considered with the exact data, it is necessary to determine B2 = 0 and to check whether

3
or not this corresponds to obtaining true models for which the balance relationship

Yo= O |y |- |YDB8 =¥ B ¥ INx L] (3.147)

holds, and which is actually reflected in the exact initial data ;0, ;1, ;2, S )?L.
With increasing complexity of the models on the attainment of the true complexity s;’

(for each one of L+ 1 models), the coefficients are restored exactly to 13/-”_0) = 13;-’. Even with

further increase in s;, the coefficients b, = ij do not change because the coefficients

(8:185;>5%)
of the extra arguments are equal to zero. {I’tjle models of all the variables are attained true and
the value of the criterion Bo = 0. It is also possible, as it might turn out, that the criterion
assumes the value Bo =01 m the cases when the sorting among the different combinations
of models for all the variables discloses pamal models with coincidence structures such as

Xo, =X =Xp,, =X*. As yO:Y B, Poy, =Piy =---=Pr, =P, B; becomes

s T

= 1P — Y BIP =0 (3.148)

for arbitrary values of the coefficients.

This property of the criterion is mentioned by Thara [27] in his correspondence with the
editor of the journal “avtomatika” (Soviet Journal of Automatic Control). Later, the idea
arose as to nonuniqueness of the choice of models according to the balance criterion [36].

Theorem 1. Estimation of the coefficients of the prediction models with regard to the
prediction balance criterion is an incorrect problem because it has an enormous set of
solutions.
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Proof: Considering 3 as a unit vector, the prediction balance criterion can be written as
B = |Xoao — Xran| - |Xean)|P?, (3.149)

where a;, j = 0,1,2,---, L are the vectors of coefficients in the models of averaged data
and the detailed prediction models, correspondingly.

This is to be minimized with respect to the coefficients ap and a; to obtain the optimal set
of prediction equations. The system of normal equations in Gaussian form can be obtained
as

OB?

= =0; j=0,1,2,---,L, (3.150)
aaj

Assuming that the structures of the models are already known,

2X{Xoao — 2X§(X1ay| -+ [Xrar) = 0,
—2X[ Xoao +2X] (X1ay| -+ - |XaL) = 0. (3.151)

These matrix equations are linearly dependent. Each of the equations has an infinite set of
solutions and the system of equations yields the trivial solution &; =0; j=0,1,2,--- L.

Corollary 1. In modeling the exact data, it is necessary to obtain the value of B2 = 0, which
S

o (=]
is sufficient for structural identification of the true models (y;=X; bj(?; j=0,1,2--- L), if
(i) the exact data of the variables yj; j = 0,1,2,---,L satisfy the balance relationship

()?0=)O/ 3); (ii) the arguments of the matrices X; contain all true arguments of the )?j, j=
0,1,2,--.,L; and (iii) the common basis of the arguments is nondegenerate; i.e., sorting
does not reveal a complexity s’ such that X o == XL(S,). These three conditions are
neither excessively stringent nor idealized. The first two make the problem of modeling
several variables connected by the linear balance relationship well posed and the third
establishes the conditions for correct application of the balance criterion (uniqueness of
choice of models), which can be ensured algorithmically.

Attainment of the value of the criterion (B = 0) is achieved with increase in the com-

y
plexity, which is always monotonic. This can be explained by the calculation of B2 on the

y
same data as it is used to estimate the coefficients. This can be represented graphically
as the dependence of the criterion on the complexity of the partial models of the different
variables in a multidimensional space.

Let us look at the second part Bé of the balance criterion. The component of the criterion
Bf,,, which reflects the influence of noise is

L
B} = agso+ »_ flals;. (3.152)
=1
This increases linearly with an increase in the complexity of the partial models )‘)j(sj); j=

0,1,2,---,L; i.e., it is the plane whose inclination in multidimensional space is determined
by the noise variances (sz; Jj=20,1,2,--- L. This inclination increases according to the
increase in the noise variances.

Keeping in mind the properties of the component B2, we conclude that (i) the criterion

¥
B(z,,-n) being an (L+ 1)-dimensional function of the variables (in numbers) s5;; j=0,1,2,---,L
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always has a unique minimum, (ii) this minimum is always in the hypercube 1 < s5; < s}’; Jj=
0,1,2,---, L (i.e., the overly complex superfluous models are always weeded out), and (iii)
with increase in the variances of the noises (at least in one of them), the minimum is
displaced on the side of decrease in the complexity of the models (with respect to at least
one of the variables).

These properties can be represented graphically. One can observe the decrease in the opti-
mal complexity of the models, which is typical of external criteria, using a multi-dimensional
surface whose sections (isolines) for different noise variances are ajz; j=0,1,2,.-- L.

Corollary 2. If the three conditions which are asserted in corollary 1 for 32 also hold in

the modeling of noisy variables y;; j = 0,1,2,---,L, then the followmg properties of the
selected models in optimal complexity as per the balance criterion B(,m) hold: (i) for arbitrary
nonzero noise variances ajz; j=0,1, 2, - -+, L, the minimum of the criterion as a function of
different complexities s;; j =0,1,2,---,L exists and is unique, (i1) the achieved minimum
always lies in the bounded region 1 < s; <% j=0,1,2,---,L, where sO is the complexity
of the true models, and (iii) with increase in the variances of the noises a 3 j=0,1,2,--- L
the minimum is displaced in the direction of decrease in the complexxty of the optimal
models.

Theorem 2. The problem of estimating the coefficients for the prediction models as per
the balance criterion becomes correct (having a unique solution) if the quadratic stability
criterion S is considered along with the balance criterion; i.e., by forming the combined
criterion as

c5* = B*+ §%. (3.153)

Proof. Let us consider the stability criterion as a stabilizing functional, the sum of the
quadratic criteria giving the quality of the output vector error on each of the prediction
levels.

L
2=y — Xall (3.154)

The combined criterion ¢5 is the combination of “prediction balance plus stability criterion.”

L
= | Xoao — (Xyan| -+ [Xpar]® + 3 lly — X% (3.155)
j=0
Let us determine the estimates of the vectors a;, j =0,1,2,---, L by minimizing the com-
bined criterion. We obtain the system of normal equations as
dc5?
9~ 0, j=0,1,2,---,L. (3.156)
8a,-
Then, for the prediction model of the first level ¥, or $, we have:
0c5? r T T
Ja = 2X0X0a0 - XO(X1a|| tee |XLaL) - Xoy() = 0, (3]57)
i

and from this,

N 1 _
A0s = E(XEXO) X2 [yo + Xhay| - - - |Xrap)l- (3.158)
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For the models of the second level 9;, j=1,2,---,L:

dc5?
5 = 2 X X[ Xiar) — X[ Xoao — X[ (n |-+ y) = 0; (3.159)
J
j = ]a 27 co 7L
From this,
. 1 _ :
Bies, = ZOGX) T X0 | -+ ly) + Xoaoly j=1,2,-- L. (3.160)
The matrices XjTXj, j=0,1,2,... L are assumed to be nonsingular.

Solving the system of two matrix equations of ¢5? and @, we obtain the estimates of
the coefficients of the prediction models of both levels as

N 1 _ 2, 1 -
oy = 3XEX0) X5 1250+ 01l -+ [y)] = S0 + 5 (XEX0) Xl -+ )

. 1 _ 2, 1 _
Bes, = 3TXD X200 ) + yol = 38+ 3G X) ™ X]yo; (3.161)
j=1,2,---,L
where a;, j=0,1,2,---,L are the estimates of the coefficients of respective models as per

the least squares method. Thus, the goal of the regularization is achieved.

Corollary 3. On regularization of the problem of selection of structure for prediction
models by the balance-of-prediction criterion with the help of stability criterion.

The problem of structure choice of prediction models by the balance criterion becomes
correct (i.e., achieving a unique solution) if the quadratic stability criterion $? in the com-
bined criterion ¢57 is used as regularizing the operator as

¢5%(sh,s7) = min _ [BX(s},s7) + S2(s5, D], (3.162)
SjEmjijZO,L
where m denotes the set of arguments taking part in the predictive models of both levels,
sp and s7 are the notations for optimal structures.

The stability criterion in the above formulation makes it possible to reduce the region of
solution of the problem of selecting structures by using the prediction balance criterion to
a compact subset which leads to a unique solution of the problem.

Interpretation of the results in the case of B},,,. It follows from the comparison of B,
and Bfm that the number of variables is equal to, for example, the number of seasons
(L = 4); the vector of connected variable is the vector of second-level variable ¢ = Q =
(01, 02,---,0n8)7. The remaining variables are the seasonal variables associated with the
first level y; = g, = (g1,1,q12, - ,q,J\/)T7 t=1,2,---,L. All the balance coefficients are
equal 3; = 1/L, 8 =(1/L,---,1/L)T. However, for the results of the investigation of noise
immunity of the criterion B(zh.n) to be applicable to the criterion Bgm (or what amounts to

the same thing,) to

B = 10 = @ 1a081, (3.163)
it is necessary to show the validity of noise conditions specified before. The vectors Q and
g, 1=1,2,--- L are obtained from the measured time series data g;; k=1,2,---,LN. Let

us suppose that a noise with the usual properties is imposed on these measurements,

g =@ +G; EIG] =0, E[G)) = 02, E[G¢1 =0, i #J. (3.164)
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The components of each vector g, are taken from g, at a period of length L.
@ = (Qumty Gmtsls 5 Grersv-1L) s £=1,2,+-, L. (3.165)

Therefore, for each ¢, the noise vector £, satisfies the original conditions.

qr =q: +&i E[&] =0, E[&ET) = o?ly, E[€]&1=0,j %, (3.166)

where, for all ¢ vectors of the seasonal values, the noise variances are equal to 0% and are
independent of ¢. Further, with reference to the mean annual values, we obtain

Q =é+§0, é=(qol |-+ g8,

2
€0 =& |- €8, El€] =0, E[&E]] = %IN; (3.167)

i.e., the noise variance for the second-level mean annual variable is 1/L times the variance
of the original noise 0 = ¢?/L which increases the noise immunity of modeling at the
second level. The components of the noise vector & are also independent. This means that
one of the conditions fails to be satisfied; i.e., the condition of independence of & and all
£rt=1,2,--- L.

El&le) = BEl&] - 1€0)T &)

o?

1 Teq_ O
FEETE] = (3.168)

It

This reflects on the calculation of the mathematical expectation of the criterion B2,,,, which
is obtained in somewhat different form

Biear = E[Bge’ar] = ”QO - (ZIT o IqL)ﬁllz
2 2 L 2 L

o2 a (e
S0t > si- 2 > (Pl Pis,)- (3.169)

=1 i=1
The trace of the (PTP;) can be written as
tr(PIP;) = [ Xo(X2X0) ™' XIX:(XTx)~ X1,

which cannot be calculated in the general case.
It is difficult to determine how Bﬁmr behaves with complication of the models of both
levels. It may fail to be unimodal, or its global minimum may not be displaced in the
direction of simplification of models with increase in the noise variances.

The criterion B2, will have the same properties as BY,, when the matrices X, and X;

are orthogonal; i.e., X}X; =0; i=1,2,---,L. Then

D 0 ~AO AO 02 -
Bl = 10° = @71+ 1aDBI7 + ;(MZ&)- (3.170)
i=1

Although this condition usually contradicts the condition of linear connection of variables
of the two levels (Qr = %Z,":l q:,1), one can interpret it as the specific nature of the
two-level modeling problem of a single variable given by its seasonal and annual values.
The orthogonality condition XJX; = 0 will in fact hold when the seasonal models of the
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first level are not used at the second level. Here, the mean annual models are constructed
independently of the seasonal models, and these are used in the selection of the best two-
level models according to the balance criterion.

Corollary 4. The problem of selecting structures for predictive models by the prediction
balance criterion becomes correct if a different (in nature and composition) set of arguments
is used for constructing models of the two levels.

Indeed, in reconciliation of seasonal and annual predictions using the same source of
measured data, the balance criterion is inefficient and leads to trivial results. On the other
hand, if one uses a different set of arguments for constructing two-level models, then the
balance criterion in the choice of structure becomes efficient.

In practice, such a case is ensured, for example, by constructing the seasonal models
in the form of a system of L difference equations and the annual models in the form of
a harmonical functions [48]. This corresponds to the condition of independence of the
informational bases of the models of different levels [36], which is necessary for efficiency
of algorithms for multilevel modeling.

6 CONVERGENCE OF ALGORITHMS

First we give the definition for canonical formulation of the external criteria [135] and then
proofs for internal convergence of two multilayer algorithms; one is the original multilayer
algorithm; the other is the algorithm with propagating errors [42], [79] {134], [136].

6.1 Canonical formulation

The canonical form of the external criteria is an analytical tool to investigate various prop-
erties of the criteria. This is not convenient from a practical standpoint for calculating the
value of a criterion in cases involving large numbers of observations, but it can be used
directly for model selection of a small number of observations.

Definition
The canonical form of the criterion is defined as the expression y' Dy, where D is a symmetric
strictly positive-semidefinite matrix—strictly in the sense that (a) Vy # ©, y"Dy > 0 and
(b) Iy ¥ 0O, y'Dy=0.

The matrix D is determined by the corresponding criterion and the partitioning of data.

Residual sum of squares

We give here the canonical form of residual sum of squares (RSS) used in the least-squares
method. Suppose we have a system of conditional equations of the form y = Xa. The
parameters a are estimated as

a= XXy, 3.171)
The RSS is calculated as

e? = (y — Xa)'(y — Xa). (3.172)
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This can be written in the canonical form using the notation Pyy = X(X7X)7'X7 as
& = y'I — Pw)y = y' Dysy, (3.173)

where D;s=(I — Pyy) is a symmetric positive semidefinite matrix for N > m, [ is the unit
matrix, and N indicates the total number of data points.

Regularity criterion

This is given as

AXB) = 05 — 98)" (8 — 95), (3.174)
where 5 = Xp(X5X4)"'X]ys. Using the notation Pa=Xp(X1X,)~'X]=(p;), the criterion
can be written as

AYB) =Y s, — Y piya)s (3.175)

i€B JEA

where A and B are the training and the testing sets correspondingly. By expanding this
algebraically, we get

ANBY= yp -2 Zys,»pmj £ 3N PijPixYa;Yay s (3.176)

i€B i€B jEA iEB jEA keA
or the matrix form
, > ics PiPik| (—py) ya
AB) = (alys) | ——— |[--- ] -—--
(—Dpy) 1 B
PgAPBA —PgA
- yT ______ y = yTDn,gy_ 3.177)
_PBA 1

This is the canonical form for the regularity criterion. The matrix D,,, depends on the
sequencing of the training and testing sets—so does vector y.

Minimum bias criterion

This is given as
Ths = G =576 - %w, (3.178)
where W indicates that the criterion is computed on the set W; 5% = Xw(XLX6) " 'XZys; G

corresponds to either A or B and W=AUB.
Let us define the notations as

Xw(XZX6) ' XLy 2 Pweys, G=A or B. (3.179)
The criterion can be rewritten as
s = (Puaya — Pwsys)" (Pwaya — Pwgys)- (3.180)
The canonical form can be obtained as
PluPwa |—PlsPws

m=y| —== | —== |y=yDuy (3.181)
—PE/BPWA Pa/BPWB

This is the canonical form for the minimum bias criterion.
Analogously, one can obtain canonical forms for other criteria.
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6.2 Internal convergence
Defining multilayer aigorithm with propagating outputs

Let us assume that there are m input variables of x (x;,x2,-- -, Xxn), ¥ is the output variable,
G, is the set of ¢ input variables at the rth layer (z1,22,- - -, 24), (g > m), N is the number of
initial data points. Mapping R takes place from layer r to the layer r+1; i.e., R : G, — Gpy1.

First, the elements zy),k =1,2,---,F are the column vectors of the matrix z\” of the
transformed experimental data. They are determined from the condition

27 = Py, (3.182)

where P, = (zﬁ"1)|z](»'_]))[(ZE'—DIZ}'—”)T(ZY_”Iz](»r‘]))]“l(z?_l)[z;'_l))T, is the projection op-
erator of the least-squares method; and y is the observation vector of output variable.

Second, the N-dimensional vector 7 is a partial description of the rth layer as its kth
component is expressed by

I R (e VR T )
Ly = g(zi(rk) yZiky ) (3.183)

where i,j vary as per their representation from the (r — 1)st layer. The partial polynomial
in its simplest form is

8(Zikys Ziwy) = A1Zigy + A2y 1 = 1,2,.--.g— 1L, j=i+1i+2,-- g (3.184)

where @) and a3, as the arbitrary coefficients, assumes an iterative process.

Finally, from the set of elements zf;; of the following layer that is obtained, a subset
71" is singled out according to an external criterion. The external criterion gives to these
solutions qualitatively new properties that the modeler finds desirable.

Suppose the regularity criterion A%(B) is considered as the external criterion that has the

sum of squares of the deviations on the testing set B

ya zyh
O e o I (3.185)
y8 Z};‘”

The algorithm stops when the criterion achieves the minimum in the layer r compared with
the layer r+ 1 for a particular component; it is then said that it is converged; i.e.
YDy < yTDDy, (3.186)

reg

where DY), and Df;fg” are the positive-semidefinite canonical matrices formed based on the
components at r and r + 1 layers, correspondingly.

Internal convergence is an especially important property of multilayer algorithms. If the
external criterion becomes the internal criterion (i.e., the regularity criterion AZ(B) becomes
the residual sum of squares (RSS) 2}, the result of the algorithm must be equivalent to the
result of multiple regression analysis, at least when the function of y is linear in variables
and coefficients.

Here the internal convergence is considered (i) towards a solution and (i1) with respect
to the structures.

Convergence fo a solution. Suppose that stopping is not envisioned and the class of func-
tions formed by superposition of the function g includes a function A(xyy) = vy, & =
1,2,---,N where xg), = (X6, X2, * * - » Xmehy)> then the algorithm converges to a solution if
the sequence of vectors zf.'"’ has a limit as r — oo and if this limit is y.
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Convergence with respect to structures. Suppose that stopping is not envisioned and the
class of functions formed by superposition of the function g includes a unique function A(x)
such that A(xg) = yw, kK =1,2,.-- N, then the algorithm converges with respect to the
structure if the sequence of functions z,(r)(x) has a limit as » — oo and if it is equal to A(x).
Unlike the above case, here it takes the measure of distance between the functions. In the
class of linear polynomials, a natural measure for distance between two functions is the sum
of squares of the distances between similar terms involved in them. The distance between
two arbitrary functions is measuerd as the sum of the squares of distances between their
values from the initial data. Based on this, the definitions of convergence to a solution and
with respect to structure are equivalent.

Definition 1. An algorithm converges in a finite number of steps if, beginning with some

layer, zfr) are equal to their limiting value.

Definition 2. There is effective convergence if the algorithm converges in a finite number
of steps; i.e., the layer with which zﬁ') is the first one and equal to its limiting value; the

next layer has the divergent characteristics.

Definition 3. It is referred to the convergence under the condition that A%(B) = RSS,
where RSS is calculated on the initial data, as internal convergence.

The internal convergence to the solution and in structure is ensured by the following
theorem.

Theorem 3. Suppose that y* is the projection of the vector y on to the linear space L(X),
formed by the columns of the matrix X. Suppose the criterion is calculated on the set W.
Then, F number of partial descriptions with the sequence of vectors zf(r) converges to y* as
r — oo. If the X7X is nonsingular, the model corresponding to the limiting vector coincides

with the regression equation for y as a function of X.

Assume that the best model in optimal complexity is being sought, that means it is the
case of F=1.

Let us look at the numerical sequence of ||y —z'”||, which can be shown as nonincreasing.
In the multilayer algorithm with the propagating outputs, the vector z*V is formed by

2 = a1 + a7, (3.187)

where a; and a, are found by minimizing the quantity ||y —a,z\” —azz}')H. It follows that the
vector z"*V is the projection y onto L(z,(.’)lzj(.’)); i.e., the linear hull of the vectors z,(’) and z}’).

||y—z“+1)|l < ||y~—z(’)||, r=0,1,--- (3.188)

Thus, the sequence ||y — z\”|| is nonincreasing and as a sequence of norms it is lower
bounded. Therefore it has a limit that is denoted by g.

Let us look at the sequence ||z”]|. By the definition, z{” € L(X) for all r. Consequently,
z € L(X). Further more, (y — z) is orthogonal to L(X); i.e., (y — 2)’X = 0. It follows from
the above that ||| > ||”|| and one can easily see that [|Z”{| < [ly||. Thus, the sequence
lz”|] is nondecreasing and higher bounded. It has a limit, which is denoted by 7.

Let us look at the sequence ). The existence of the limits of the sequences ||y — z”||

and ||z”|| implies that with increasing r, the vectors z'") become arbitrarily closer to the
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manifold defined by the system of equations

lly =l
2l

It is shown that there exists a unique vector z* belonging to this manifold, which is the
limiting vector of the sequence z{”. It follows that

Il
=]

(3.189)

1) T -1 T
Z(r+) — (Z‘(r)lzj(_r)) [(Zgr)lzjr)) (z(~')|z(~'))] (Z(r)|z'§r)) y

T T T T T

Zj(r) Z}’)ZY)ZE’) _ ZEr) z(r)z(r)z(r) ZEr) Z(r)z(r) (r) + zgr) Z?)ZJ('”Z,(‘V)

= T T y
Zgr) Zgr)zj(r) Zj(‘r) . (Zgr) ZJ(Vr))z

= Pirya (3190)

where P, denotes the corresponding projection matrix.

It follows from the convergence of the sequence |y — z"?|| that by choosing r suitably,
the equation ||y — Pyy|| = o can be satisfied to any desired closeness for all i =1,2,---,m.

From the above, the following equation

T, _ 2,0 0o 0 o 2 AT 0007 _ ol o0 of
()’y—Q)[Zi 4L _‘(Z[ Zj)]"'}’( 4%y ZiZZZ

T T T

) z(r)Z(r)z[('r) +Z5r) ZY)ZJ(-”ZJV) Yy

IR
(3.191)

will be satisfied for any desired accuracy by noting that z(') %%
The unknowns z(r) zj() can be determined to an arbitrary degree of accuracy from the
above equation because of its dependence on coefficients in terms of the unknowns. The

solution can be found as

T T
(ry _(r) ZJ('r) _ (Zgr) Zj(r))z #0‘

T
zEr) Z](‘r) = (f) y, i=1,2,---,m (3.192)

using the relationships o? +72 = yTy, and y7z{” = 747" Z(P. This is satisfied with an arbitrary
accuracy as the quantities |y — z”|| and ||z”|| tending to their limits ¢ and 7, respectively.
This determines uniquely the limiting vector z* € L(X). It can be written as

X'z* -y = 0. (3.193)
Thus, z* is the orthogonal projection of y on to z(X) or, what amounts to the same thing,
* - y*.

Let us look at the case F' > 1. It shows that the distances between the parlial descriptions
belonging to the same layer get arbitrarily smaller as r — oo; ie., ||z —2"|, & o F—
1, I=k+1,k+2,--- F gets arbitrarily small. Let us define ||y — z({)H = g+6,, and it leads
to

lly = 250 < lly = 2. (3.194)

(r)

We consider F partial descriptions of the form a,z;”" + azz ) at the (r + Dst layer, for which

the above inequality holds. Therefore,

e+8 <y—2’l <o+8-1, k=1,2,--- F. (3.195)
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Figure 3.7. Geometrical interpretation of the sequences used in the internal convergence

Also, for arbitrary values of a; and @, we can have the relation ||y — alzﬁ.r) - azzﬁ')ﬂ > 0.

From the above inequalities, one can obtain the estimate of (Figure 3.7)

120 = 271 < Vie+6-1)2 — &+ V(e +6,7 — . (3.196)

The right side quantity of the inequality can become arbitrarily small for a suitable r. This
completes the proof for the internal convergence of the algorithm to the solution and in
structure.

Defining multilayer algorithm with propagating errors
The function g has the form
g, x) = x;+ax;, i=1,2,--- F, j=F+1,F+2,.--,Q, (3.197)

where @ = F+m and a is determined by the least-squares method using the set A or W.
Here the algorithm is described in its simplest way. In the first step the partial descriptions
of the form

zZi=ax;, i=1,2,---.m (3.198)

of which the residual errors are computed as AV'z; = z; — y and F best of the descriptions
are chosen.
In the rth step (r > 1), the partial descriptions of the form

0 = e, i=1,2,-F, j=1,2,.m (3.199)
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of which the residuals are computed as A(’”)z,-j = zg”) —zg') , and F best models are chosen.

The process continues until the value of the criterion decreases significantly. Suppose
we are required to reproduce a dependence of the form y = h(x) + £. The approximation is
achieved as

h(x) = g1(x) + g2(x) + -+ -, (3.200)
where g;(x), i=1,2,--- correspond to the chosen equations at each step.

The internal convergence of the algorithm to the solution and in the structure is ensured
by the following theorem.

Theorem 4. Suppose y* is the projection of y onto 1(X) and the criterion is computed on
the set W. For any F number of partial descriptions, the sequence of vectors z\"” converges
to y* as r — oo. If the matrix X7X is nonsingular, the model corresponding to the limiting
vector coincides with the regression equation for y as function of x.

The proof of this theorem differs from the theorem 1 because the vectors (y —z\”) and z\
are not orthogonal in this case. We shall follow the preceding scheme.

When F = 1, the sequence ||y — z”|) is nonincreasing and lower bounded; it is denoted
by the limit p. As per the step-by-step iterations in the algorithm, we have

Iy =27 = Iy =) <, (3:20D

and we note that

1 x,-x-T
D = 0 gy = 04 ;T_I__(y_z(’)). (3.202)
iM
From the above inequality, |lx7y — x2”|| < 6Q2|ly — 27| — &), i = 1,2,---,m can be
obtained. Thus, the sequence z” has a limit 7.
The rest of the proof is analogous to the preceding one.



