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Abstract. The paper discusses neural networks intended to handle the tasks of relation
approximation (identification) and random process extrapolation (forecasting). Their
salient feature is that their ensembles of elements are specified a priori as perceptrons
or perceptron-like GMDH algorithms briefly outlined herein. Complex neuron
ensembles may be called active neurons in contrast to simple binary neurons. In the
course of learning or self-organization, active neurons select their input stimuli
according to a specified criterion and determine weight coefficients for connections. In
this way, they organize the structure of the entire neural network. The objective sought
in constructing a neural network is to enhance the efficiency in handling the task set for
each neuron. The number of active neurons is determined by the amount of information
coming in for processing as a sample of observations over a test or controlled object. In
each layer of a neural network, the active neurons differ from one another in sets of
input and output variables. The more important difference between active neurons lies
in the structure of their algorithms, which in fact runts an active-neuron neural network
into a multilayered decision collective rule [1,2,3].

Introduction

According to physiologists, connections between neurons in the brain are not permanent. They
form and break up in response to external stimuli, and this happens at an especially high rate
during the first days after the birth of the organism. Supposedly, this process depends solely on
the adaptability of a neuron itself to external stimuli. A fundamental fact is that every neuron
selects its input connections all by itself according to a specified criterion; the connections are
not imposed on it by the environment. The environment only sets limits for the choice of stimuli
according to the criterion defined for neurons. Neurons for which connections are assigned from
without by the person in charge of modeling or by other neurons should be called passive
neurons. In contrast, neurons that select their input variables (through learning or self-
organization) may be called active neurons. The connections selected by active neurons uniquely
define the structure of connections for the entire neural network. So far now neural networks
have been mainly developed for passive neurons, such as the simple neurons of McCulloch and
Pitts, with specified binary input variables [3,4].

The aim of this paper is to extend the theory of self-organization for isolated models [6,7,8,9] to
active-neuron networks neurons. In fact, there is a good deal of similarity between the self-
organization of models and the self-organization of neural networks. The key procedures of self-

organization for models, such as the selection of layer number by exhaustive search according to



an external criterion, optimization of sets of input and output variables, and exhaustive-search
termination rules, are valid for the self-organization of both an isolated model and a neural

network.

The objective sought in combining active neurons into a neural network is to enhance the
accuracy in achieving the task facing both every neuron and the entire neural network. Neurons
find themselves in different conditions. They may differ in both output variables and in the set of
input variables. In the example, that follows a neural network is used to forecast random

processes in a complex economic object with fuzzy characteristics.

1. The spectrum of GMDH algorithms used as active neurons

The GMDH algorithms mainly differ in how the candidate models to be tested by an exhaustive
search for compliance with an external criterion are generated. The criteria used most often are of

the precision, differential or informative type.

The principal GMDH algorithms listed in Table 1 have been developed for continuous variables.
Among the parametric algorithms (with the model coefficients evaluated according to the
criterion minimum), those most known are the Combinatorial algorithm [7], the Multilayered
Iterative algorithm [8], and the Objective Systems Analysis algorithm [9]. The basic one is the
Combinatorial algorithm, which applies an exhaustive search to all polynomial models that can
be derived from a complete linear polynomial by eliminating some of its terms. In some cases,
the Multilayered algorithm may miss some models, thus giving rise to what is known as
multilayer error. For example, it may occur when the true relation contains terms that cannot be

formed with partial linear descriptions.

Those less known are the parametric algorithms, which apply an exhaustive search to harmonic

and harmonic-exponential functions, and the Multiplicative-Additive GMDH algorithm, in which

the polynomial models to be tested by exhaustion are obtained by taking the logarithm of the
roduct of input variables [10,11].

GMDH algorithms
Variables Parametric Non-parametric
- Combinatorial (COMBI) - Objective Computer
- Multilayered Iterational (MIA) Clusterization (OCC);
Continuous |- Objective System Analysis (OSA) - "Pointing Finger" (PF)
- Harmonical clusterization algorithm;
- Two-level (ARIMAD) - Analogues Complexing (AC)
- Multiplicative-Additive
Discrete and |- Harmonical Rediscretization - Algorithm on the base on
binary Multilayered Theory of Statistical
Decisions (MTSD)

Table 1. Spectrum of GMDH algorithms.



The parametric GMDH algorithms have proved highly efficient in cases where one is to model
objects with nonfuzzy characteristics, such as, engineering objects. In cases, where modeling
involves objects with fuzzy characteristics, it is more efficient to use the non-parametric GMDH
algorithms, in which polynomial models are replaced by a data sample divided into intervals or
clusters. They are exemplified by the Objective Computer Clusterization (OCC) algorithm that
operates with pairs of closely spaced sample points (called dipoles [12]), implemented by resting
two hierarchical clustering trees for compliance with the balance criterion [13], and the Analog
Complexing algorithm [14]. The nonparametric class also includes the GMDH algorithm based
on the Statistical Decision Theory [15]. It is recommended in cases where one is to test the truth

of the input data sample and to remove from it the error caused by the sample-defining expert.

As already noted, GMDH algorithms have been developed for continuous variables. In practice,
however, the sample will often include variables discretized into a small number of levels or
even binary values. To extend GMDH algorithms to discretized or binary variables, the harmonic

dediscretization algorithm has been developed [15].

The existence of a broad gamut of GMDH algorithms is traceable to the fact that it is impossible
to define the characteristics of the rest or controlled objects exactly in advance. Indeed, one type
of objects may require one algorithm and another type, a different algorithm. Therefore, it will be
good practice to try several GMDH algorithms one after another and to decide which one suits a
given type of objects best. The lower the minimum of the discriminating criterion, the better the
rested algorithm. In this way, the type of algorithm is chosen objectively, according to the value

of the rest criterion.

1.1. The Combinatorial GMDH algorithm (COMBI)

The flowchart of the algorithm is shown in Fig. 1. The input data sample is a matrix containing N
levels (points) of observations over a set of M variables. The sample is divided into two parts.
Two-thirds of points having a high variance make up the learning subsample N, and the
remaining one-third of points form the check subsample Ng. The learning sample is used to
derive estimates for the coefficients of the polynomial, and the check subsample is used to
choose the structure of the optimal model, that is, one for which the regularity criterion AR(s)
takes on a minimal value:
N
AR(s)= > (v, ~$,B) >min ()
N B i=l
or better to use the cross-validation criterion PRR(s) (it take into account all information in data

sample and it can be computed without recalculating of system for each checking point):

N
PRR(S):NLZ[y,. ~y,(B)]" — min, N,=N-1, N,=L
1
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Fig. 1. Combinatorial GMDH algorithm.

1 - data sampling;

2 - layers of partial descriptions complexing;

3 - form of partial descriptions;

4 - choice of optimal models;

5 - additional model definition by discriminating criterion.

Output
model



To obtain a smooth exhaustive-search curve (Fig. 2), which would permit one to formulate the
exhaustive-search termination rule, the exhaustive search is performed on models classed into
groups of an equal complexity. The first layer uses the information contained in every column of
the sample, that is, the search is applied to models of the form:

y =a,+ax,, i=1.2,..M. (2)
The output variable must be specified in advance by the experimenter. Only a small number of

variables (usually, F = 5), showing the best results in the first layer, are allowed to form second-
layer candidate models of the form

Yy =aytax,; +ax, j=12,..M. 3)

Y=agta;
Non-physical models
Y=apta;x;tax,

Y=apta;x;taX,tasxstasXstasxstag
X6

—

Fig. 2. External accuracy criterion minima values plotted against complexity of model
structure S for different noise variance &2 .

LCM - locus of criterion minima line;
--- - model choice by criterion minimum,;
---- - model choice by "left corner rule".



The second-layer models are evaluated for compliance with the criterion, and F best variables are
allowed to form third-layer candidates. The procedure is carried on as long as the criterion

decreases in value.

The above procedure achieves the following goals. (I) Only the number F' of variables yielding
the best result are allowed to form the more complicated models of the subsequent layers. (2)
Instead of one layer, two last layers are used to determine the best result of the exhaustive search,
so that the value of the criterion on the exhaustive-search curve can only decrease (compare the
values represented by the dashed and solid lines in Fig. 2). The optimal model has to be chosen
not by the criterion, but by what we call the left-corner rule. (3) The best variables of each layer
are used to continuously expand the input data sample: with each layer, the exhaustive search
adds F columns to their number in the sample. Typical curves for the exhaustive search on the
basis of the precision criterion and for different noise variances are shown in Fig. 2. It was
proved, that calculations are faster when:
a) in all formulae informational array W’ W is used instead of data sampling array W=(X7Y);

b) models parameters are calculated by recursion method of "framing".

A salient feature of the GMDH algorithms is that, when they are presented continuous or noisy
input data, they will yield as optimal some simplified nonphysical model. If is only in the case of
discrete or exact data that the exhaustive search for compliance with the precision criterion will
yield what is called a physical model, the simplest of all unbiased models. With noisy and
continuous input data, simplified (Shannon) models [6,7,8,9] prove more precise in

approximation and for forecasting tasks.

To test a model for compliance with the differential balance criterion, the input sample is divided
into two equal parts. The criterion requires to choose a model that would, as far as possible, be
the same on both subsamples. The balance criterion will yield the only optimal physical model
solely if the input data are noisy. With exact noise-free data, the criterion leads to a multiplicity
of optimal models. To resolve the ambiguity in such a case, resort has to be made to a
regularizing combination criterion (the algorithm for the extended definition of the only optimal

model).

1.2. The Multilayered Iterative GMDH algorithm (MIA)

The Combinatorial algorithm described in the previous subsection may likewise be called a
multilayered or iterative one, despite the fact that the iteration rule grows more complicated with
every layer. This is possibly the reason why it is customary to call the Multilayered Iterative
GMDH algorithm as algorithm in which the iteration rule remains unchanged from one layer to
the next. As is shown in Fig.3, the first layer tests the models that can be derived from the
information contained in any two columns of the sample. The second layer uses information from
four columns; the third, from any eight columns, etc. The exhaustive-search termination rule is

the same as for the Combinatorial algorithm: in each layer the optimal models are selected by the



minimum of the criterion or by the left-hand corner rule. In each layer, the F best models are used

to successively extend the input data sample (Fig.4).
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1 - data sampling;

2 - layers of partial descriptions complexing;

3 - form of partial descriptions;

4 - choice of optimal models;

5 - additional model definition by discriminating criterion;
F1 and F2 - number of variables for data sampling extension.



As with the Combinatorial algorithm, the output variable must be specified in advance by the

person in charge of modeling, which corresponds to the use of so-called explicit templates [8,21].
1 2 3 ... M

R

Fig. 4. Derivation of conditional equations on a data sample.

a - explicit templates form; b - implicit templates.

1.3. The Objective System Analysis algorithm (OSA)

In discrete mathematics, the term template refers to a graph indicating which of the delayed
arguments are used in setting up conditional and normal Gauss equations. A gradual increase in
the structural complexity of candidate models corresponds to an increase in the complexity of
templates whose explicit and implicit forms are shown in Fig. 4. When one uses implicit
templates, one has, beginning from the second layer of the exhaustive search, to solve a system
of equations and to evaluate the model, using a system criterion. The system criterion is a

convolution of the criteria calculated by the equations that make up the system

CR = Sl\/CRl2 +CR;+..+CR; — min, (4)

syst

where s - is the number of equations in the system.

The flowchart of the OSA algorithm is shown in Fig. 5. The key feature of the algorithm is that it
uses implicit templates, and an optimal model is therefore found as a system of algebraic or
difference equations. An advantage of the algorithm is that the number of regressors is increased
and in consequence, the information embedded in the data sample) is utilized better. A
disadvantage of the algorithm is that it calls for a large amount of calculations in order to solve
the system of equations and a greater number of candidate models have to be searched. The
amount of search can be reduced, using a constraint in the form of an auxiliary precision
criterion. In setting up the system of equations, one then discards the poorly forecasting equation
(using equation only) for which the variation accuracy criterion for the forecast is less than unity

(narrowing operation):

— min, (6)
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where: y, - is the variable value in the table; y . - is the value calculated according to the model

and y is the mean value.

This criterion is recommended in the literature in order to evaluate the success of an
approximation or of a forecast [16]. With & < 0.5, the result of modeling is taken to be good;
with 0.5 < & < 0.8 it is taken to be satisfactory; with & > 1.0, modeling is considered to have

failed, and the model yields misinformation.)
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2. Extended definition of the only optimal model by the theory
of discriminating criteria

It has been demonstrated theoretically and experimentally that the exhaustive-search curves
shown in Fig. 2 are gradual and unimodal for the expected value of the criterion [7,8,9]. The
number of candidate models tested in each exhaustive-search layer cannot be infinitely large. In
other words, in constructing exhaustive search curves, the expected value of the criterion is in
effect replaced by its mean (or least) value. Because of this, the curves take on a slightly wavy

shape, and a small error may creep into the optimal model structure choice.

The theory of discriminating criteria has been developed by Fedorov [17] and Yurachkovsky [18]
with special reference to experimental design. It has however proved its relevance to the self-
organization of models and active-neuron neural networks. The theory proceeds from the
following premises: (I) there exists a "true" model represented in the data sample; (2) the
assumed few object descriptions fit the model to a different degree; (3) the model that comes
closest to the true model can be selected from its compliance with an auxiliary discriminating

criterion.

With such an approach, every GMDH algorithm consecutively uses two criteria. At first, an
exhaustive search is applied to all candidate models for compliance with the main criterion, and a
small number of models whose structure is close to optimal is selected. Then only one optimal
model is selected that complies with a special discriminating criterion. The theory of optimal
discriminating criteria is still in the developmental stage, but successful discriminating criteria

are already known.

In cases involving the selection of a structure for optimal polynomial models, the approximation
or forecast variation criterion serves well. In the selection of optimal clusterization, good results
are obtained with the symmetry criterion for the clusters distance matrix calculated relative to the

secondary diagonal [19], etc.

3. Self-organization of an active-neuron neural network

A neural network is designed to handle a particular task. This may involve relation identification
(approximation), pattern and situation recognition, or a forecast of random processes and
repetitive events from information contained in a sample of observations over a test or control

object.

Each neuron is an elementary system that handles the same task. The objective sought in
combining many neurons into a network is to enhance the accuracy in achieving the assigned task
through a better use of input data. As already noted, the function of active neurons can be
performed by various recognition systems, notably, by Rosenblatt's two-layer perceptrons [5].
Such a neural network achieves the task of pattern recognition. Its theory is presented in the

algebraic theory due to Zhuravlev [1].
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In the case of relation approximation (identification and extrapolation (forecast) of random
processes and repetitive events, the active neurons are the GMDH algorithms mentioned earlier.
In the self-organization of a neural network, the exhaustive search is first applied to determine
the number of neuron layers and the sets of input and output variables for each neuron. The
minimum of the discriminating criterion suggests the variables for which it is advantageous to
build a neural network and how many neuron layers should be used. Thus, the theory of neural

network self-organization is similar in many respects to that of each active neuron.

3.1. The search termination rule

In self-organization, the layers of neurons are extended as long as this improves the accuracy of
the solution yielded by the neural network. This will be demonstrated later with reference to a

relevant example.

3.2. Group allowance for arguments

We will call as the exhaustive-search characteristic of a neural network the graph that relates the
main precision criterion for a specified variable to the layer number. This characteristic is similar
to that of the GMDH algorithms. To obtain a smooth and unimodal curve, the exhaustive-search
characteristic is calculated for many tools in the sample, and the results are averaged.
Theoretically, the exhaustive-search characteristic has been investigated for the expected value of
the criterion [7]. In practice, the exhaustive-search curve has to be constructed not for the
expected value and even not for the mean value of the criterion. Rather, it is constructed for the
best results of the exhaustive-search applied to a group for which the criterion takes on the least
value. This exhaustive-search termination rule holds only when many approximation or forecast

results are average.

3.3. The selection of a discrete template

What type of template to use depends on the task at hand (Fig. 4). In an approximation task, the
template does not contain delayed arguments; in a forecast task, two or three delays have the be
allowed for. In the former case, one obtains single-moment equations; in the latter, difference

equations.

3.4. Extended definition of one optimal model for each neuron in a network

Self-organization of each neuron taken separately uses the differential balance criterion or the
regularity precision criterion. As already noted, the exhaustive-search curve approaches its
minimum in a gradual manner, and the criteria of models close to the optimal one differ only
slightly from one another in value. This explains why one has to use an extended definition
algorithm. By this algorithm, instead of one, several of the best models are selected. From them,

only one that complies with another variation discriminating criterion chosen.
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3.5. Readout of modeling results

Each layer in a neural network contains neurons, whose outputs correspond each to a particular
specified variable: the output of the first neuron to the first variable, the output of the second

neuron to the second variable, etc.

Each column consists of neurons whose outputs correspond to one of the variables. From each
column in turn, one neuron with a minimal variation criterion is selected. More specifically, one
neuron having the best result is selected from the first column of neurons for which the output is
the first variable; similarly, one neuron is selected from the second column of neurons for which
the output is the second variable, etc. This selection procedure uniquely defines the number of

layers for each variable and, thus, the structure of the neural network.

3.6. The exhaustive search of methods for data-sample extension and narrowing

The principal method of data-sample extension is by including the output variables from the
previous layer that have complied with the criterion best of all. It will also be a good plan to test
against the criterion the advisability of sample extension by simple nonlinear transformations of

input variables. In the example that follows, three variables are involved. They are x; , X,, and xs.

(a) The extension using the covariance of the variables
VI=X Xy, Vy=XX5, Vi3=X,X5

(b) The extension using the reciprocals of the variables
X X X3 .

The reciprocals should above all be proposed for the variables that take a minus sign in the

equation; that is, they reduce the value of the output.

3.7. Sample extension by consecutive elimination of the most efficient variables.

The diversity of the variables that come in for the exhaustive search (performed by each neuron)
can further be increased by eliminating the most efficient variables, thus producing partial

subsets. This can be best illustrated by an example.

Let the input of a neural network accept a data sample containing just M=25 variables. Suppose
further that we have used the OSA algorithm and found in the first neuron an optimal system of
forecasting difference equations in the variables X, X Xj3 Xj3 X2, . These variables are least
"fuzzy" and lend themselves to forecasting by this system of equation. We eliminate from the
sample the variables thus found and apply the OSA algorithm to a second neuron. This yields a
second optimal system of equations in the variables x3 X9 X4 X3;. As a result, the minimum of the
criterion increases (because the second set contains other than the best variables) and shifts to the

left. Now we eliminate from the sample the nine variables thus found, and apply the OSA
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algorithm to a third neuron. This yields an optimal system of equations in only three variables xs

X6 X11. The minimum of the criterion goes up still more and again shifts to the left etc.

This shift in the minimum of the system criterion bears out the adequacy law, which states that
for more fuzzy systems the optimal description (model) must be likewise more fuzzy and simple;
that is, it must have a smaller number of equations [6]. Computer experiments confirm the above
form of exhaustive-search curve. In the above example, the number of variables used for
decision-making is increased from 5 (in the first neuron) to 5 + 4 + 3 + 2 + I =15 (in five
neurons). Ten features are discarded as inefficient. So, we shall have 5 x 15 = 75 neurons in each

layer.

3.8 Simultaneous and successive algorithms for neural networks

In a computer program, neurons can be implemented simultaneously or successively, using

memory devices.

4. Description of an algorithm for a neural network using
forecasting GMDH algorithms as active neurons

An example of the algorithm structure is given in Fig. 6. Sample extension is effected solely by
including the output variables from each previous layer of neurons. The samples show the form
of the discrete template used to teach the first neurons of a layer by the Combinatorial GMDH
algorithm. In particular, when two time delays are allowed for (7=2), the first template

corresponds (to the following complete difference equation:

Xy =G0 T A Xy _yy T QX g oy T Qg X 41 _yy T AgX 449

The GMDH algorithm will suggest which of the proposed arguments should be taken into

consideration and will help to estimate the connectivity coefficients.

4.1. Self-organization by the Combinatorial GMDH algorithm of an active
neuron network intended to forecast the activity index of a stock exchange

The objective of the forecast is this. Given a sample of observations over changes in a small
number of indirect indexes for which the mathematical relation is not known, one is to form a
short-term forecast for the activity of a stock exchange. This should involve all variables, but
only those of them for which the forecast yields a variation of less than unity will be taken as the
output variables of the forecast. In the example at hand, the input sample (so Table 2) contains
generally accessible information. It lists the values of four variables related to sessions at the
New York Stock Exchange from May 1 to August 17, 1991 (70 days). They are the minimal
activity index x; the maximal activity index X,, the closing activity index x3, and the total volume

of operations over a day x4.

In schematic form, the neural network used for forecasting is shown in Fig. 6. To begin with, we
construct the first layer of neurons in the network. Then, by applying the polynomial

Combinatorial GMDH algorithm, we will able to determine how accurate the forecast will be for
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all variables. For this purpose, we use a discrete template that allows a delay of one or two days
for all variables. Then we add a second, a third, etc. layer to the neural network, as shown in Fig.
6, and go on doing so as long as this improves the forecast. This will demonstrate the efficiency

of the neural network.

N X1 X2 X3 X4 N X1 X2 X3 X4

1 375 375.5 | 376.8 130 36 | 371 378 378 170
2 371 377 372 220 37 | 377 378 378 160
3 366 373 368 190 38 | 372 377 373 140
4 369 373 373 155 39 | 374 376 375 159
5 369 374 373 175 40 | 372 375 374 170
6 372 374 373 110 41 | 371 378 378 140
7 373 377 376 185 42 | 376 378 376.5 155
8 375 377 377 160 43 | 376 380 376 180
9 374 378 375 177 44 | 376 378 377.5 160
10 375 378 377 128 45 | 376 381 380 177
11 378 380 379 130 46 | 380 383 383 162
12 377 383 383 165 47 | 381 383 382 183
13 382 384 383 187 48 | 381 383 381 195
14 383 388 387 235 49 | 381 386 386 200
15 385 390 390 230 50 | 384 386 385 190
16 387 390 388 175 51 | 382 385 383 150
17 385 388 388 180 52 | 379 385 379.5 160
18 384 388 385 185 53 | 378 | 380.5 | 380.3 160
19 383 386 384 170 54 | 380 381 381 145
20 379 384 380 170 55 | 380 382 381 130
21 387 380 379 130 56 | 380 384 384 136
22 379 382 381 162 57 | 384 387 387 170
23 374 381 376 170 58 | 387 388 388 168
24 375 377 377 145 59 | 387 388 387.6 170
25 377 383 383 174 60 | 387 389 387.5 162
26 380 382 380 135 67 | 385 387 385.5 127
27 378 382 378 159 62 | 384 391 391 175
28 375 378 376 160 63 | 390 | 391.5 390 170
29 374 376.5 375 165 64 | 388 392 389 165
30 375 378 378 195 65 | 387 390 387.5 145
31 371 378 371 140 66 | 386 388 388 146
32 360 373 371 159 67 | 388 392 390 215
33 368 373 372 185 68 | 389 392 390 195
34 372 374 374 159 69 | 389 392 389 176
35 368 374 371 165 70 | 383 390 395 190

We have used the Combinatorial GMDH algorithm to provide for the self-organization of the
neuron models shown in Fig.6. For each neuron, we have applied the extended definition
procedure to one model (out of the three closest to the optimal one). For the optimal models, we
have calculated the forecast variation criterion; the relevant exhaustive-search characteristics are
in Table 3.
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Fig 6. Schematic arrangement of the first two rows of a neural network.

Neuron row | 8%(x4) | 8%(xz) | 8%(Xs) | &%(Xa)

1 -1 -2 -3 -4
0.131 | 0.085 | 0.200 | 0.858

2 1I-1 11-2 11-3 |I-4
0.143 | 0.089 | 0.193 | 0.816

3 111-1 -2 -3 I11-4
0.153 | 0.091 | 0.178 | 0.828

4 -1 | -2 | =3 | -4
0.158 | 0.093 | 0.183 | 0.832

Table 3. Minimal values of the variation criterion over neural network layers



16

It may be inferred that there is no need to construct a neural network in order to form a forecast
for the variables x;, and x, because the variation criterion takes on the least value in the first
layer. It is advisable to use a neural network to form a forecast for the variable x4, and especially

x3 for which the variation criterion takes on the least value in the third layer of neurons.

We give the difference equations for the neurons of the network that are needed in order to
calculate the output variable x; of the last layer of neurons. The third layer of neurons:
Neuron III-3:

X300 = 181,723 - 0.226x14- 1y + 0.669W (k- 2) - 6.56Twyi - 1) - 0.097Waq - 1) +

+0.747x34- 1y + 5.526x3(1 - 2); 8% =0.1778

The second layer of neurons:

Neuron II-1:
Wi = 18,238 + 0.044x4¢ - 1y + 0.04 1x4 - 2) - 0.395v3(-2) - 0.054v4(-2) +
+0.735x14k- 1y + 0.116x1 1 - 2); 8% =0.1430

Neuron II-2:
Wy = 24.120 + 0.862x3(- 1y + 0.032vy (- 2)- 0.046Vv 1 - 2); 8> =0.0898

Neuron II-4:
Wagy = - 91,599 - 1.735x2(k_ nt 1,959X2(k_2) + 0.193X3(k_ - 12.441V2(k_ nt
+ 10.895X3(k_ nt 0.225X4(k_ 1) 82 =0.8157

The first layer of neurons (only the neurons required to calculate the variables in the succeeding

neurons are given):

Neuron I-I:

Vigy = 0.141 + 0.763x2 - 1) + 0.070x2¢; - 2) - 0.02 x4k -2) - 0.309x 1 - 1); 82 =0.1317
Neuron [-2:

Vo = 33.254 + 0.103x1 1 - 2) + 0.909x3(4 - 1) - 0.001x4( - 2) - 0.094x2(4 - 1y; 82 =0.0852
Neuron [-4:

Vagy = - 73.738 + 0.292x ;- 1) + 1.400x2¢ - 1) - 1.633x3¢6- 1) + 0.272x4(3 - 1y -

- 0.015x4 23 8= 0.8580

The neurons selected in self-organization are shown in Fig.6. The equations define the
connections that must be implemented in the neural network; in this way, they help achieve the
task of structural self-organization of the neural network. For brevity, the data sample in the
above example is extended in only one way: tile output variables of the first layer are passed on

as additional variables to the second, third, etc. layer of neurons.

We draw the reader's attention to the high accuracy of forecasts for the securities quoted at the
Stock Exchange. Undoubtedly, computer self-organization algorithms can have a strong impact

on the operation of exchanges. There is one more vital application for neural networks.
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Simplified (Shannon) GMDH models, when used as active neurons, can forecast the effects of

nuclear tests, thus making unnecessary their actual implementation.

4.2. Neural network self-organization and algorithms for optimization of
complex control systems

The principal roadblock in the use of linear and non-linear programming algorithms for complex
system optimization is that it is often impossible to specify either the goal function or the
applicable constraints with sufficient accuracy. Meanwhile, even minute inaccuracies in their
specification may have a strong impact on the outcome of optimization. Active-neuron networks

can be readily combined with linear and non-linear programming algorithms.

One of the output functions is taken as the objective function, the equations of the other output
variables can serve as equality-type constraints. This removes the subjective factor from the
specification of the goal function and constraints. The human operator defines criteria for their

choice, and not the objective function and constraints themselves [19,20].
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