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Abstract

The paper presents an in-process prediction of corner wear in drilling operations by means of a polynomial network. The polynomial

network is composed of a number of functional nodes and well organized to form an optimal network architecture using an algorithm for

synthesis of polynomial networks (ASPNs). Thrust force or torque in drilling operations has been correlated with corner wear in this study.

It has been shown that the thrust force is better than the torque as the sensing signal for the in-process prediction of corner wear.

Experimental results have shown that the corner wear over a wide range of drilling conditions can be predicted with a reasonable accuracy

if the cutting speed, feed rate, drill diameter, and thrust force are given. # 2000 Published by Elsevier Science S.A. All rights reserved.
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1. Introduction

It has been reported that one third operation of material

removal processes performed in industry is drilling opera-

tions [1]. Therefore, drilling is a very important and com-

monly used material-removal process. However, tool failure

may occur in drilling operations as a result of tool-wear.

Hence, in-process prediction of tool wear in drilling opera-

tions should be developed. In the literature, a number of tool

wear prediction techniques have been reported for drilling

operations [2±6]. These techniques involve the correlation of

tool wear with process variables such as force, surface ®nish,

vibration, torque, and acoustic emission. However, there are

dif®culties involved concerning the reliability, calibration,

and cost in the use of these detection techniques. Continued

progress is being made to improve these prediction techni-

ques for achieving commercial success.

Basically, there are two main regions of tool wear in a

cutting tool, i.e., ¯ank wear on the tool ¯ank face and crater

wear on the tool rake face. However, in this paper, corner

wear instead of ¯ank wear or crater wear is used to predict

the tool wear in drilling operations. This is because not only

is corner wear on the drill easy to measure but also drill life is

characterized strongly by corner wear on the drill [7]. To

improve the reliability of the tool-wear prediction model, a

polynomial network [8] is constructed to predict the corner

wear in drilling operations. The polynomial network is a

self-organizing adaptive modeling tool with an ability to

construct the relationships between input variables and

output feature spaces [9]. A comparison between the poly-

nomial network and the back-propagation network has

shown that the polynomial network has a greater prediction

accuracy and fewer internal network connections [10±12].

The best network structure, number of layers, and functional

node types can be determined by using an ASPN [13].

Experimental results have shown in this paper that thrust

force is better than torque as the sensing signal for the

prediction of corner wear. Under a variation of drill dia-

meters, cutting speeds, and feed rates, corner wear can be

predicted reasonably by the network if the thrust force in the

drilling process is given.

In what follows, polynomial networks are introduced ®rst.

An experimental set-up for measuring corner wear in dril-

ling operations is described next. A polynomial network for

predicting corner wear is then developed. Finally, experi-

mental veri®cation of the developed network is shown.

2. Polynomial networks

The polynomial networks proposed by Ivakhnenko [14]

are group method of data handling (GMDH) techniques
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[15]. In a polynomial network, complex systems are decom-

posed into smaller, simpler sub-systems and grouped into

several layers using polynomial functional nodes. The inputs

of the network are sub-divided into groups, then transmitted

into individual functional nodes. These nodes evaluate the

limited number of inputs by a polynomial function and

generate an output to serve as an input to subsequent nodes

of the next layer. The general methodology of dealing with a

limited number of inputs at a time, then summarizing the

input information, and then passing the summarized infor-

mation to a higher reasoning level, is related directly to

human behavior as observed by Miller [16]. Therefore,

polynomial networks can be recognized as a special class

of biologically inspired networks with machine intelligence

and can be used effectively as a predictor for estimating the

outputs of complex systems.

2.1. Polynomial functional nodes

The general polynomial function known as the Ivakh-

nenko polynomial in a polynomial functional node can be

expressed as

y0 � w0 �
Xm

i�1

wixi �
Xm

i�1

Xn

j�1

wijxixj

�
Xm

i�1

Xm

j�1

Xm

k�1

wijkxixjxk � � � � (1)

where xi, xj, xk are the inputs, y0 is the output, and w0, wi, wij,

wijk are the coef®cients of the polynomial functional node.

In the present study, several speci®c types of polynomial

functional nodes (Fig. 1) are used in the polynomial network

for predicting corner wear in drilling. An explanation of

these polynomial functional nodes is given as follows:

1. Normalizer. A normalizer transforms the original input

into a normalized input, where the corresponding

polynomial function can be expressed as

y1�w0�w1x1 (2)

in which x1 is the original input, y1 the normalized input,

and w0 and w1 are the coef®cients of the normalizer.

During this normalization process, the normalized

input y1 is adjusted to have a mean value of zero and a

variance of unity.

2. Unitizer. On the other hand, a unitizer converts the

output of the network to the real output. The polynomial

equation of the unitizer can be expressed as

y1�w0�w1x1; (3)

where x1 is the output of the network, y1 the real output,

and w0 and w1 are the coef®cients of the unitizer.

The mean and variance of the real output must be

equal to those of the output used to synthesize the

network.

3. Single node. The single node only has one input and the

polynomial equation is limited to the third degree, i.e.,

y1�w0�w1x1�w2x2
1�w3x3

1; (4)

where x1 is the input to the node, y1 the output of the

node, and w0, w1, w2, and w3 are the coef®cients of the

single node.

4. Double node. The double node takes two inputs at a time

and the third-degree polynomial equation has the cross-

Fig. 1. Various polynomial functional nodes.
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term so as to consider the interaction between the two

inputs, i.e.,

y1�w0�w1x1�w2x2�w3x2
1�w4x2

2� w5x1x2�w6x3
1�w7x3

2;

(5)

where x1, x2 are the inputs to the node, y1 the output of

the node, and w0, w1, w2,. . ., w7 are the coef®cients of

the double node.

5. Triple node. Similar to the single- and double-nodes, the

triple node with three inputs has a more complicated

polynomial equation allowing the interaction amongst

these inputs, i.e.,

y1�w0�w1x1�w2x2�w3x3�w4x2
1�w5x2

2�w6x2
3�w7x1x2

�w8x1x3�w9x2x3�w10x1x2x3�w11x3
1

�w12x3
2�w13x3

3; (6)

where x1, x2, x3 are the inputs to the node, y1 the output

of the node, and w0, w1, w2,. . ., w13 are the coef®cients

of the triple node.

2.2. Synthesis of polynomial networks

To build a polynomial network, a training database with

the information of inputs and outputs is required ®rst. Then,

an algorithm for synthesis of the polynomial networks

(ASPNs), called the predicted-squared-error (PSE) criterion

[13], is used to determine an optimal network structure. The

principle of the PSE criterion is to select as accurate but less

complex network as possible. To accomplish this, the PSE is

composed of two terms, i.e.,

PSE � FSE� KP; (7)

where FSE is the average-squared-error of the network for

®tting the training data and KP is the complex penalty of the

network.

The average-squared-error of the network FSE can be

expressed as

FSE � 1

N

XN

i�1

�ŷi ÿ yi�2; (8)

where N is the number of training data, ŷi the desired value in

the training set, and yi is the predicted value from the

network.

The complex penalty of the network KP can be expressed

as

KP � CPM
2s2

PK

N
; (9)

where CPM is the complex penalty multiplier, K the number

of coef®cients in the network, and s2
P is a prior estimate of

the model error variance, also equal to a prior estimate of

FSE.

Usually, a complex network has a high ®tting accuracy.

Hence, FSE (Eq. (8)) decreases with the increase of the

complexity of the network. However, the more complex the

network is, the larger will be the value of KP (Eq. (9)).

Therefore, the PSE criterion (Eq. (7)) performs a trade-off

between model accuracy and complexity. In addition, it has

to be pointed out that CPM (Eq. (9)) can be used to adjust the

trade-off. A complex network will be penalized more in the

PSE criterion as CPM is increased. On the contrary, a

complex network will be selected if CPM is decreased.

3. Experimental set-up and training database

To build a polynomial network for predicting corner wear

under a variation of cutting conditions, a training database

with regard to different cutting parameters and corner wear

needs to be established. A number of drilling experiments

were carried out on a CNC machining center (First MCV-

641) using HSS twist drills for the machining of S45C steel

plates. The drilling cutting parameters were selected by

varying the cutting speed in the range 16±36 m/min, the

feed rate in the range 0.06±0.30 mm/rev, the drill diameter in

the range 6±10 mm, and the average corner wear in the range

0.1±0.65 mm. The drill geometry with corner wear is shown

in Fig. 2. The corner wear land was measured by both cutting

edges of the drill (wa and wb) using an optical tool micro-

scope. The average corner wear land w is calculated by

averaging wa and wb on the cutting edges. Each of these

cutting parameters was set at the three levels that are listed in

Table 1. In the experiments, 27 drilling experiments were

designed based on the cutting parameter combinations.

The thrust force and torque signals were measured using a

dynamometer (Kistler 9271A) under the workpiece. The

thrust force and torque corresponding to corner wear, cutting

speed, feed rate, and drill diameter are summarized and also

listed in Table 1. Based on the developed training database, a

three-layer polynomial network for predicting corner wear is

synthesized using the PSE criterion. Figs. 3 and 4 show the

developed polynomial networks for predicting corner wear

using torque and thrust force, respectively. All of the poly-

nomial equations used in the networks (Figs. 3 and 4) are

Fig. 2. Features of the corner wear land on the drill.
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Table 1

Experimental drilling cutting parameters, torque, thrust force, and corner wear land for the training database

Test no. Cutting speed

(m/min)

Feed rate

(mm/rev)

Drill diameter

(mm)

Torque

(N cm)

Thrust

force (N)

Corner

wear (mm)

1 16 0.06 6 31 224 0.100

2 16 0.18 8 117 414 0.100

3 16 0.30 10 269 818 0.100

4 26 0.06 8 54 244 0.100

5 26 0.18 10 181 621 0.100

6 26 0.30 6 103 469 0.100

7 36 0.06 10 80 351 0.100

8 36 0.18 6 71 347 0.100

9 36 0.30 8 167 558 0.100

10 16 0.06 6 37 321 0.375

11 16 0.18 8 133 970 0.375

12 16 0.30 10 295 1614 0.375

13 26 0.06 8 58 630 0.375

14 26 0.18 10 215 1214 0.375

15 26 0.30 6 113 773 0.375

16 36 0.06 10 98 548 0.375

17 36 0.18 6 72 543 0.375

18 36 0.30 8 191 1168 0.375

19 16 0.06 6 49 468 0.650

20 16 0.18 8 173 1091 0.650

21 16 0.30 10 361 2107 0.650

22 26 0.06 8 119 760 0.650

23 26 0.18 10 265 1813 0.650

24 26 0.30 6 154 1119 0.650

25 36 0.06 10 135 935 0.650

26 36 0.18 6 100 896 0.650

27 36 0.30 8 252 1250 0.650

Fig. 3. Polynomial network for predicting corner wear using the torque as the sensing signal.
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listed in Appendices A and B. A schematic diagram of the

experimental set-up for predicting corner wear by the poly-

nomial network is shown in Fig. 5.

4. Experimental veri®cation and discussion

To evaluate the developed networks for predicting corner

wear, eight drilling tests using different cutting parameters

were performed (Table 2). Once the cutting speed, feed rate,

drill diameter, and torque or thrust force are fed into the

polynomial network, the predicted corner wear can be

calculated quickly using the polynomial functions listed

in Appendices A and B. A comparison of measured corner

wear and predicted corner wear using the two polynomial

networks (Figs. 3 and 4) is presented in Table 3. The average

absolute error between the measured corner wear and the

predicted corner wear using the polynomial network with

torque is 25.8% and the maximum absolute error is 72.4%.

However, the average absolute error between the measured

corner wear and the predicted corner wear using the poly-

nomial network with thrust force is 7.0% and the maximum

absolute error is 13.8%. It is shown clearly that the thrust

force is better than the torque as the sensing signal for the in-

process prediction of corner wear in drilling operations.

5. Conclusions

A polynomial network for predicting corner wear in

drilling operations has been reported in this paper. The

Fig. 4. Polynomial network for predicting corner wear using the thrust force as the sensing signal.

Table 2

Experimental drilling cutting parameters, torque, thrust force, and corner wear land for the tool-wear veri®cation

Test no. Cutting speed

(m/min)

Feed rate

(mm/rev)

Drill diameter

(mm)

Torque

(N cm)

Thrust

force (N)

Corner wear

(mm)

1 21 0.12 6 52 382 0.169

2 31 0.24 8 146 717 0.172

3 31 0.24 6 95 595 0.210

4 31 0.24 10 245 1058 0.240

5 31 0.24 10 280 1215 0.290

6 21 0.24 6 142 1138 0.650

7 31 0.12 10 185 1189 0.650

8 36 0.18 6 100 896 0.650

156 H.S. Liu et al. / Journal of Materials Processing Technology 101 (2000) 152±158



polynomial network uses a self-organized method for mod-

eling the relationships amongst the cutting parameters (cut-

ting speed, feed rate, drill diameter), the process parameters

(torque, thrust force), and the corner wear. Several veri®ca-

tion tests have shown that the thrust force is better than the

torque as the sensing signal for the in-process prediction of

corner wear in drilling operations. The average absolute

error between the measured corner wear and the predicted

Fig. 5. Schematic illustration for the prediction of corner wear.

Table 3

Comparison of measured corner wear and predicted corner wear using different polynomial networks

Test no. Corner wear land (mm) Error (%)

Measurement Prediction From Fig. 3: From Fig. 4:

From Fig. 3:

polynomial network

From Fig. 4:

polynomial network

polynomial network polynomial network

1 0.169 0.120 0.180 �29.0 ÿ6.5

2 0.172 0.140 0.172 �18.6 �0.0

3 0.210 0.300 0.188 ÿ42.8 �10.5

4 0.240 0.290 0.207 ÿ20.8 �13.8

5 0.290 0.500 0.255 ÿ72.4 �12.0

6 0.650 0.560 0.669 �13.8 ÿ2.9

7 0.650 0.590 0.598 �9.2 �8.0

8 0.650 0.650 0.636 �0 �2.2

MAEa (%) 72.4 13.8

AAEb (%) 25.8 7.0

a Maximum absolute error.
b Average absolute error.
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corner wear using the thrust force as the sensing signal is less

than 10%. In other words, polynomial networks can be used

effectively to predict the corner wear over a wide range of

cutting conditions in drilling.
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Appendix A.

1. Normalizer:

1.1. Y01�ÿ1.67�0.0116 V,

1.2. Y02�ÿ1.8�10f,

1.3. Y03�ÿ4.81�0.601d,

1.4. Y04�ÿ1.07�0.0116Tz.

2. Unitizer:

2.4. W�0.368�0.233Y31.

3. Triple node:

3.4. Y1 1�0.293ÿ1.98Y02ÿ1.83Y03�2.93Y04

ÿ0:182Y2
02ÿ0:119Y2

03ÿ1:45Y2
04ÿ0:958Y02Y03

�1.32Y02Y04�0.654Y03Y04ÿ0.207Y02Y03Y04

�0:208Y3
04,

3.5. Y21�0.349�1.57Y11ÿ0.0287Y03ÿ0:324Y2
11

�0:168Y2
02ÿ0:148Y2

03ÿ0:119Y11Y02ÿ0.115Y11Y03

ÿ0.0531Y02Y03�0.133Y11Y02Y03ÿ0:219Y3
11,

3.6. Y31�0.0446�0.905Y21�0.0827Y01ÿ0.0228Y04

ÿ0:0631Y2
21ÿ0:016Y2

01�0:0732Y2
04ÿ0.0622Y21Y01

ÿ0.0591Y2lY04ÿ0.0253Y01Y04�0.0333Y21Y01Y04

�0:0901Y3
21.

Appendix B.

1. Normalizer:

1.1. Z01�ÿ3.12�0.12V,

1.2. Z02�ÿ1.8�l0f,

1.3. Z03�ÿ4.81�0.601d,

1.4. Z04�ÿ1.68�0.00205Fz.

2. Unitizer:

2.4. W�0.360�0.233Z31.

3. Double node:

3.4. Z12� ÿ6:5eÿ1:7Z2
02ÿ0:0198Z01Z02.

4. Triple node:

4.4. Z11�0.0845ÿ0.795Z02ÿ0.632Z03�1.52Z04�
0:283Z2

02�0:0415Z2
03ÿ0:229Z2

04�0 .106 Z 0 2 Z 0 2ÿ

0.152Z02Z04ÿ0.377Z03Z04ÿ0.0501Z02Z03Z04

ÿ0:0871Z3
04,

4 .5. Z2 1�0.171ÿ0.946Z1 1�38.8Z1 2ÿ0.0168Z0 3

�0:099Z2
11�261Z2

12ÿ5:28Z2
11�9 . 4 8 Z 1 1 Z 1 2 Z 0 3

ÿ4.92e4Z3
12,

4 .6 . Z 3 1�0 .0643�0 .558Z 2 1ÿ0 .115Z 0 2�0 .4Z 0 4

ÿ0:086Z2
21ÿ0:158Z2

02ÿ0:156Z2
04ÿ0 . 2 2 9 Z 2 1 Z 0 2

�0.446Z21Z04�0.276Z02Z04�0.184Z21Z02Z04

�0:293Z3
21ÿ0:155Z3

04.
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