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In the following paper the application domain of harmonic algorithm GMDH is discussed.

The inconsistency of MLS-estimation of an amplitude vector, used in harmonic algorithm of GMDH,
as a result of the evaluation error in the frequency vector is proved. We have evaluated the convergence
rate of the norm of amplitude vector MLS-estimate to zero under the condition that data volume
increases without bounds depending on the error evaluation in the frequency vector. We have also
estimated the largest data volume, for which using of GMDH harmonic algorithm is still correct.
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The GMDH algorithms for modelling of polyharmonic processes and fields [1-3]
are widely used. These algorithms rest upon the idea of the inductive self-organiza
tion principle and choice of the best model in sense of some discrimination criterion.
The algorithm for one-dimensional process modelling is aimed at the model struc-
ture search (and parameter estimation) in the following class of the model structures:

k=1

F= {y, =aq+ ) (asinw,t+b, coswkr)},mEM

where a,, b,, w, are model parameters. The model structure is defined by the value of
m (number of harmonics), M being the set of permissible values of harmonics
number m.

The GMDH harmonic algorithm employs the following scheme: at first, for each
fixed me M the model parameters are estimated and then the obtained models are
compared by means of the discrimination criterion. To use such a scheme one must
solve two problems:

a) the construction of an effective algorithm for parameter estimation;
b) the choice of a discrimination criterion (the criteria of model quality).

In this paper we shall discuss the problem of parameter estimation. In GMDH
harmonic algorithm the estimation of parameters is carried out under the assump-
tion that the model has an unbiased structure (value m is true). Suppose that the
process model is the sum of m harmonic components with pairwise distinct
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frequencies w,, w,, ...,

m
yi=do+ Y (qsinm.t + b,cosw,!) (1)
k=1
where a,, b, are coefficients and w;#w;, i#j, 0 <w, <m, 1 <k <m. The process is
observed at equal discrete time intervals at the points ¢, 1 <t < N. The observed
sequence 1s z;:

z,=y,+90, 1<t<N

where J, is the sequence of similarly distributed independent random variables with
zero mean and unknown finite variance (¢° < o«C).

The well known approach to parameter estimation based on minimizing the norm
| Y= Z), where Y=(y,,....yw)"» Z =(z,,...,2y)" is not suitable for harmonic models
as the parameters w, are contained nonlinearly in function (1) and there is no finite
stable procedure for solving the above mentioned problem. Therefore, in the
GMDH harmonic algorithm, parameters are estimated by the three stage scheme
[1,3]. Here we will describe this scheme briefly. Note that this scheme is intended for
parameter estimation in models without the constant term a,,

yi= Y (d,sinw,t +bjcosw,t), 1<t<N. 2)
k=1
One can readily see that the variables y,=y,,, —y,_, satisfy equalities (2) in
which

a,= —2b,cosw,t, b, =2a sinw,t.

At the first stage of the described scheme the coefficients of difference equation

y}=kz Yok = Vi) 3)
=1
are estimated. The process (2) always satisfies the equality (3). The inverse statement
is not always true. Equality (3) has the solution (2) if and only if the roots of the
secular equation, corresponding to difference equation (3), are pairwise distinct and
not greater than 1. One must note the fact that if the variables y, satisfy equalities (2)
then there exists the unique collection «,,«,,...,a, for which equality (3) is true for
every integer k.

At the second stage the frequencies w,, ®,, ..., w,, are evaluated from the equation

m
2Y d,coskw—1=0, (4)
k=1
where as 4, designates the estimations of coefficients from the first stage. The equali-
ty (4) always has not more than m roots and if the number of solutions is exactly m
then those vlaues can be used as the estimations &, ®,, ..., d,, of true frequencies.
Finally at the third stage, the parameters a,, b, are estimated. The background of
the described three stages procedure can be found in [3].
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In [3] the author shows that the observations

,
1= e T 4o

cannot be used directly in the described scheme for the reason that though the
random variables 0, = z, — y, have the zero mean and equal variances 2¢2, in con-
trast to the random variables J, they are not independent, cov(d,, ,, d/_ J=—0¢%1In
this work the author proves the inconsistency of MLS-estimation for the coefficients
oy, %, ..., Oy 10 equality (3) when variables z, are used at the first stage. Moreover he
proves that the orthogonal regression gives the consistent estimation of the coeffi-
cients oy, oy, ..., &y,

As frequency estimates are computed directly from relation (4), the consistency of
the estimates @,, @,, ..., d,, follows by the consistency of the estimates of coefficients
of difference equation (3) &,,d,, ..., &,. In the existing algorithms at the third stage,
the amplitudes a,, b, (1 < k < m) are estimated by the least square method.

The described GMDH harmonic algorithm was used successfully for the solution
of a variety of modelling problems. However, our efforts to employ the algorithm for
the solution of modelling problems in case of large samples proved not to be
effective. It turned out that even with good frequency estimates the amplitude esti-
mates were close to zero regardless of their true values. This failures motivated us to
investigate the amplitude performance for large data samples when there are errors
in frequency vector evaluation. The results of the investigation may be presented by
means of the following assertion.

Suppose that the values

Ve=ao+ ) (qsinw,t +bcosw, t)+5, 1<t<N
k=1

are observed. Let also for MLS-estimation of the amplitude vector (a,,b,,...aq,, b,),
an estimate of the frequency vector w =(w, +¢&,,w, +&,, ... ,w, +¢,)7 be used,
where & = (¢,,¢,,...,¢,)" is the estimation error vector.

Assertion If the vector ¢#0, then the MLS-estimate of the amplitude vector is
inconsistent. If ¢, # 0, then MLS-estimates of the corresponding components of the
amplitude vector converge to zero and

a 1
[bj =0 (W—:—p) for any p>0.

Proof: Denote by X the n x 2m-dimension matrix

sindd; cosd, ... sind, cosd,

X=|sind;t cosd;t - sind,t cosd,t

sind, N cosd N ... sind, N cos @, N |
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Let Y be the vector of observations

MY, ] r Y (@ sinw, + b, cosm,) + 9,

k=1

Y=|y |= > (@ sinw,t + b, cos m, 1) + 3,
k=1

v, _‘ 2 (asino, N + b, cosw, N) + 5,

k=1

To obtain the MLS-estimation of amplitude vector one can use the well known
relation:

A A

(dl’bls"'dm,bm)TZ(XTX)—IXTY

First, let us prove the statement in case m = 1, and then show how this case can be
extended to a general case of arbitrary m. To make the proof look simpler in the
case m =1 we omit the subscripts in expressions apnb,wy,e,d,b ,0,.

For m =1 one can write the (X7 X) matrix in the form

N m

> sin ot Y sin @t cos it
XTX =|t=1 =1

m m
Y sin @t cos it Y. cos?dr

=1 t=1

Using trignometric relations one can calculate the sums in X7X matrix and write
out the inverse matrix

sin @

XTX -1 =
( ) N?sin’c —sin?(Na)

9 (2N = 1)sin® + sin(2N + )& cos (2N + 1)dd — cos
Cos(2N + )b —cos @ (2N + D)sind —sin(2N + 1) |

We are interested in MLS-estimation when N increases without bounds, therefore
we rewrite the (XTX)™! matrix in the form

1 1
(XXt = 2+0<ﬁ> O(N)
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The X 'Y vector may be presented as the sum

m m

Y (asin wtsindr + bcos we sindi) Y 3, sin it
. - =1
X'y= |5 +]
Y (asin wt cos it + bcos wt cos dt) S 6, cos

t=1 =1

When the sums in the first summand are calculated we get the XY vector

sin(2N + 1)¢/2 _ sin(2N + 1)(w + ¢/2)

yry @ sing/2 sin{w + &/2)
cos(w +&/2) —cos(2N + 1)(w +&/2) cose/2 —cos(2N + l)e/2
sin(w + &/2) sing/2
cos(w +¢/2) —cos(2N + 1) (w + £/2) N cose/2 —cos(2N + 1)g/2
N b sin(w + ¢/2) sing/2
4 sin2N + De/2  sin(2N + D) (w +¢/2)
sing/2 sin(w + &/2)
Y 6, sin dt
+ t=1

. .
Y 3, cos it

t=1

Note that such trignometric relations can be used only when ¢ #0 and (w + ¢/2) # 0.
But these restrictions are obviously fulfilled, as we have supposed that ¢ # 0, and the

error in frequency estimation is essentially less than the frequency value (e < w).
Let’s introduce the next designations

n_ SIN2N +1)e/2

A
! sin &/2

_Sin2N + 1) (@ + ¢/2)

AY .
sin(w + &/2)

BY cose/2 —cos(2N + 1)g/2
vt sing/2

_cos(w+¢/2)—cos(2N + 1)(w + ¢/2)
h sin(w + &/2)

B}

It can easily be seen that the functions A7, A%, BY and BY are bounded by the
constant 2/(sin ¢/2), which is independent of N.
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Using these designations one can rewrite vector XY as follows:

N

Y. 4, sin o

Ty 9 AV — A% +b BY — BY e
4 BY—BY | 4 AY - Ay il .l
Y. 8, cos dt

t=1

the MLS-estimation of the amplitude vector can be written in the form

|
|- bt - o 1)
(5>:5N - + AV,

1
a(BY — BY) + b(AY — AY) + O(N)

where

~ N -

1 1 Y 8, sin dt
_ ol — & .
N 2+0(N> (N) =
AN = N
0(1) 2+0<1> f:écos Dt .
_ - . o
N N r=1

L N N

The summand A, defines how much MLS-estimation puts down the noise in
harmonic algorithm when vector & is fixed.

Now we will show that the MLS-estimation of the amplitude vector tends to zero
and hence is not consistent. Firstly, we will prove that AY converges to zero and we
will estimate the convergence rate. The required results can be derived from the
following [4].

If Sy is the sum of N independent random variables with zero means and finite
variances, and the variance of the sum DSy increases without bounds then the mean
of the sum Sy converges to zero and convergence rate is estimated as 0((DS,)! /27
with probability 1, where p is an arbitrary positive value.

It follows from this statement that the means of the sums Y., &, sindt and

N . J, cosat converge to zero and the convergence rate can be estimated by a
function O(N'/2*?) with probability 1.

It is easy to evaluate the variances of the sum

N

o* Y 6, sin*dt=0*K,N+C,)

t=1

where K|, C,, K,, C,, are constants.
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Since one can get the desired estimates

N

Y 8, sin i 1

(=1 S :O<N”2_”) with probability 1
and

N

Y d, cos it {

=1 5 =0<N1/2—p> with probability 1
where p = 0.

Thus A" is a random vector with zero mean and it is estimated by a function
0(1/N'277), p > 0 with probability 1. i

The MLS-estimation of the amplitudes is also a random variable and now it
becomes evident that its mean is defined by the value

1
2N

1
a(AY — AY)+ b(BY —=BY)+0 (N)

a(BY — BY) + b(AY — AY) + 0(%)
It can be readily seen that this summand also converges to zero, when the error ¢
is fixed and ¢#0. As it was mentioned above the functions 4y, 4%, BY, BY are
bounded by 2/(sin ¢/2) and the convergence rate is estimated by a function 0(1/N).
Thus, the MLS-estimation of an amplitude vector is not consistent when ¢ # 0.
The rate of its convergence to zero is defined by the summand A" and estimated by
a function O(1/N'27?), p>0 with probability 1. But it must be noted that the
requirement ¢ # 0 is essential. If ¢ = 0 then MLS-estimation is absolutely unbiased

(5)-()+

Note that the result obtained for m =1 is sufficient to prove the inconsistency of
amplitude MLS-estimation in general.

The proof of the assertion for m different from 1 involves some awkward trig-
nometric transformations and is based on three facts:

1) 2m x 2m — dimensional matrix (X7X)™! for arbitrary m can be presented as

i 1 1

240 —= 0=
o) o)

(XTX)"' =

z| -

1 1
o(_) z+o(_)
e N N - 2mx2m
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2) for any ¢, # 0, the corresponding elements of E(X"Y) vector E(X"Y),,_, and
E(X"Y),, are bounded by a constant, which depends on « and ¢ and is indepen-
dent of M.

3) vector A” can be written in the form AY =(AY, AY, .. A™)", where
s o]
510 (%) 0 (%) ,=Zn J, sin ot
AN = N :
of~) 2+0f2 T 6 cosint |
. N L dicosdyt
L N J

therefore A = 0(1/N'?~?), p >0 with probability 1. -

The facts 1)-2) are true only under assumption that w; #w; (i #j) and ¢ #0.

Thus we show that even if one of the vector w elements is evaluated with an error
(i.e., ¢ #0) then the MLS-estimation of the amplitude vector is inconsistent and the
corresponding elements of the amplitude vector converge to zero when the data
volume increases without bounds.

We must note that the GMDH harmonic algorithm was successfully used for
solving different modelling problems. To investigate the properties of harmonic
algorithm the authors performed a large number of computational experiments but
the in- consistency of MLS-estimation of amplitude vector was never detected. All of
the authors get sufficiently good results in amplitude estimation when the noise
values are small and the model structure (the number of harmonics) is true. But
nobody has conducted tests on the large data volume. On the contrary, most of the
authors investigate the modelling difficulties when the data sample volume is small.

To research the application domain of GMDH harmonic algorithm we have
performed the additional investigations.

First we consider MLS-estimation of an amplitude vector mean in the case m = |
when the error in frequency evaluation is small. One can easily get

1 asin(2N + 1)g/2 + b(1 — cos(2N + 1)£/2) + 0(¢)
4sine/2| —a(l —cos(2N + 1)¢/2) + bsin(2N + 1)¢/2 + 0(e)

E(XTY)=

and MLS-estimation of an amplitude vector is

E ay _ 1
b " 2Nsing/2

If in amplitude estimates we neglect the terms of order of magnitude 0(¢) and

O(1/N) then it is easy to get
V& 1B [sinNef2|

Jai+b: N2

asin(2N + 1)e/2 + b(1 — cos(2N + 1)&/2) + 0(¢e) + 0(%)

—a(l —cos(2N + 1)&/2) + bsin(2N + 1)g/2 +0(c)+0(1~1~v>
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Hence. even when one is treating with the signals without noise (6% = 0) and the
error in frequency evaluation is small the MLS-estimation of an amplitude vector
converges to zero and the rate of its convergence to zero is defined by the function
Isin N&/2]/(Ne/2).

In the general case for arbitrary m, if we suppose that the errors in frequency
evaluation & (1 <k <m) are essentially less than the difference between w; and w;
(i # j), then it is possible to show that the values of the corresponding elements 4,, b,
are defined with the accuracy to 0(| ¢ ]|) only by values N and ¢, and are independent
of the errors in the evaluation of other components of vector w. In this case the ratio
i+ bf/ﬁf +bh? can be approximately defined as the function [sin Neg/2|/
(Neg,/2) for a sufficiently large value of N. Note, that this relation is independent of
the values of the vector w.

To compare the value of the ratio /a2 +b2//a} + b} with the values of the
function |sin N¢,/2|/(Ng,/2) for different values of ¢, and N we have performed a
number of computational experiments. Here as an example we present the results of
the simplest experiment.

We suppose that the signal model is

y, = Asinwt

and A is the amplitude A MLS-estimate when the frequency w is evaluated with an
error ¢ In this experiment we examine the quantity | 4/A4| for error values e {1072,
1074, 1075, 1078, 107'°, 107 !2}. The results of the experiment for the samples
volume N = 100, 200, ... 100 x 24 are shown in Figure 1. The plot of the ratio | A/A|
changes for the fixed ¢ is presented by the continuous curves and the Isin Ng/2|/
(Ne/2) values for corresponding (Ne¢) are presented by dots. As follows by the figure,

-

0 A 100x1og N

Figure 1 The comparison of the values (|sin N¢/2|)/(N¢/2) and |A/A.
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the | A/A| and |sin N&/2|/(Ne/2) values are similar for each of the considered values
N and & Thus the experiment confirms our conclusions and we can use the analysis
of the function |sin N &/2|/(Ne/2) performance to investigate the ratio | A/ 4| perform-
ance. It is easy to see, that if ¢ is small and N value 1s not large, the product (N¢) is in
the neighborhood of zero and hence [sin N¢/2]/(Ne/2) = 1. The experiment confirms
the fact A~ A. When the values of N _increases and (N¢) becomes significant,
Isin N¢/2|/(Ne/2) vanishes rapidly and as one can see the ratio | A/4| behaves in the
same way.

The obtained results enable approximate evaluation of the domain of correct use
of the existing GMDH harmonic algorithm. Let us assume the domain of correct
application of MLS-estimation in the form of an inequality

ElA/A|>1—a.

As follows from the experiment, this domain can be defined approximately by the
relation
|sin Ng/2|
N¢g/2

>1—a.

One can easily solve such inequality for each fixed value «.
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